|
from typing import List, Dict, Any |
|
import base64 |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel |
|
import torch |
|
import controlnet_hinter |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if device.type != 'cuda': |
|
raise ValueError("Need to run on GPU") |
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
|
|
CONTROLNET_MAPPING = { |
|
"depth": { |
|
"model_id": "lllyasviel/sd-controlnet-depth", |
|
"hinter": controlnet_hinter.hint_depth |
|
} |
|
} |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.control_type = "depth" |
|
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"], torch_dtype=dtype).to(device) |
|
|
|
|
|
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5" |
|
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id, |
|
controlnet=self.controlnet, |
|
torch_dtype=dtype, |
|
safety_checker=None).to(device) |
|
|
|
self.generator = torch.Generator(device="cpu").manual_seed(3) |
|
|
|
def __call__(self, data: Any) -> Dict[str, str]: |
|
|
|
example_payload = { |
|
"prompt": "a beautiful landscape", |
|
"negative_prompt": "blur", |
|
"width": 1024, |
|
"height": 1024, |
|
"steps": 30, |
|
"cfg_scale": 7, |
|
"alwayson_scripts": { |
|
"controlnet": { |
|
"args": [ |
|
{ |
|
"enabled": True, |
|
"input_image": "image in base64", |
|
"model": "control_sd15_depth [fef5e48e]", |
|
"control_mode": "Balanced" |
|
} |
|
] |
|
} |
|
} |
|
} |
|
|
|
|
|
prompt = data.get("prompt", None) |
|
negative_prompt = data.get("negative_prompt", None) |
|
width = data.get("width", None) |
|
height = data.get("height", None) |
|
num_inference_steps = data.get("steps", 30) |
|
guidance_scale = data.get("cfg_scale", 7) |
|
|
|
|
|
controlnet_config = data.get("alwayson_scripts", {}).get("controlnet", {}).get("args", [{}])[0] |
|
|
|
|
|
out = self.pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=1, |
|
height=height, |
|
width=width, |
|
controlnet_conditioning_scale=1.0, |
|
generator=self.generator, |
|
) |
|
|
|
|
|
generated_image = out.images[0] |
|
|
|
|
|
if controlnet_config.get("enabled", False): |
|
input_image_base64 = controlnet_config.get("input_image", "") |
|
input_image = self.decode_base64_image(input_image_base64) |
|
controlnet_model = controlnet_config.get("model", "") |
|
controlnet_control_mode = controlnet_config.get("control_mode", "") |
|
|
|
processed_image = self.process_with_controlnet(generated_image, input_image, controlnet_model, controlnet_control_mode) |
|
else: |
|
processed_image = generated_image |
|
|
|
|
|
return {"image": self.encode_base64_image(processed_image)} |
|
|
|
def process_with_controlnet(self, generated_image, input_image, model, control_mode): |
|
|
|
|
|
return input_image |
|
|
|
def encode_base64_image(self, image): |
|
|
|
buffer = BytesIO() |
|
image.save(buffer, format="PNG") |
|
return base64.b64encode(buffer.getvalue()).decode("utf-8") |
|
|
|
def decode_base64_image(self, image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
image = Image.open(buffer) |
|
return image |
|
|