Antiraedus commited on
Commit
eae3b6a
1 Parent(s): 530ce21

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -10.54 +/- 3.49
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.48 +/- 0.22
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3477b392c143f36c9e6587b4b1ccb5c1abbe211d613ade0562ddb37ce46f98ba
3
- size 102553
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d22d6667c5d7ddc8a9b44f642db4ec0e4dbff65924188ebee9a9784e510fb58
3
+ size 108021
a2c-PandaReachDense-v2/data CHANGED
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 20,
45
- "_total_timesteps": 5,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1675493536880407957,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,35 +55,35 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKoTYP4kSHkCffkS+mIAnwPOhHz55kQHAlXDiPvrOUD8WKfe/kU43vxlUH8DJEhq/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjuPkurh01r+x+Wu+d+HQv6WV/j5DYMy9o+lTP1VTcT9+acc/kExOP1YucT5nI52/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAqhNg/iRIeQJ9+RL4oK0Q8sY91P2z/LL6YgCfA86EfPnmRAcADBQzAyJByPzimnD+VcOI++s5QPxYp97/FT5e+DJhOP+peqL+RTje/GVQfwMkSGr80ZwFAZXHmvUSiAz+UaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[ 1.6915333 2.4698813 -0.19188927]\n [-2.6172237 0.15589122 -2.024504 ]\n [ 0.44226518 0.8156582 -1.9309413 ]\n [-0.7160426 -2.489508 -0.60184914]]",
60
- "desired_goal": "[[-0.00174628 -1.675437 -0.23044468]\n [-1.6318806 0.49723545 -0.09979298]\n [ 0.82778376 0.9426778 1.5579069 ]\n [ 0.80585575 0.23552832 -1.2276429 ]]",
61
- "observation": "[[ 1.6915333 2.4698813 -0.19188927 0.01197318 0.9592238 -0.1689431 ]\n [-2.6172237 0.15589122 -2.024504 -2.187806 0.9475217 1.2238226 ]\n [ 0.44226518 0.8156582 -1.9309413 -0.29553047 0.80700755 -1.3153965 ]\n [-0.7160426 -2.489508 -0.60184914 2.021924 -0.11252097 0.5141947 ]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARySCPRxPFL6+D9k92OuXvWavoj1a/u09ftYIPgVtAD4Dyns+1fAGPnG4Vj3CMOU8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[ 0.06354576 -0.14483303 0.10598706]\n [-0.07418031 0.07943611 0.11620779]\n [ 0.13363072 0.12541588 0.2458878 ]\n [ 0.13177808 0.05242199 0.02797735]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
76
  "sde_sample_freq": -1,
77
- "_current_progress_remaining": -3.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 1,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 364000,
45
+ "_total_timesteps": 364000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1673993641801467968,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo2fCPnJL17yT4g4/o2fCPnJL17yT4g4/o2fCPnJL17yT4g4/o2fCPnJL17yT4g4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE93Ov7HKzT6GZR0/1FsYP//Vgr52qxG/kmxKv1mis74opbO/EyV1P7oHyb/47r8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.37969694 -0.02628109 0.55814475]\n [ 0.37969694 -0.02628109 0.55814475]\n [ 0.37969694 -0.02628109 0.55814475]\n [ 0.37969694 -0.02628109 0.55814475]]",
60
+ "desired_goal": "[[-1.6161216 0.40193704 0.6148304 ]\n [ 0.5951512 -0.2555389 -0.56902254]\n [-0.79071915 -0.350848 -1.4034777 ]\n [ 0.95759696 -1.5705483 0.37487006]]",
61
+ "observation": "[[ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]\n [ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]\n [ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]\n [ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMcEMPm/z5j0Lrow+gR0YPnEErj2tbGs+Z+mRvdo+gL296wY+/2sHPhm7gbxBxUI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.13745572 0.112769 0.27476534]\n [ 0.14855005 0.08496941 0.22990675]\n [-0.07124596 -0.06261988 0.13175865]\n [ 0.13224791 -0.01583629 0.0475514 ]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
  "use_sde": false,
76
  "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISP31Cgvu37+UhpRSlIwBbJRLMowBdJRHQIb+EtPHktF1fZQoaAZoCWgPQwggXtcv2A3pv5SGlFKUaBVLMmgWR0CG/SETQE6ldX2UKGgGaAloD0MIpaSHodXJ1r+UhpRSlGgVSzJoFkdAhvwrEk0JnnV9lChoBmgJaA9DCJbOh2cJsuW/lIaUUpRoFUsyaBZHQIb7OZPVNHp1fZQoaAZoCWgPQwgyIlFoWffgv5SGlFKUaBVLMmgWR0CHAYZrHlwMdX2UKGgGaAloD0MILexph78m3L+UhpRSlGgVSzJoFkdAhwCUliSaE3V9lChoBmgJaA9DCJ8hHLPsifC/lIaUUpRoFUsyaBZHQIb/nqqwQlN1fZQoaAZoCWgPQwiHU+bmG9Hov5SGlFKUaBVLMmgWR0CG/qvwmVqvdX2UKGgGaAloD0MIHjNQGf++6L+UhpRSlGgVSzJoFkdAhwT3LV4HHHV9lChoBmgJaA9DCNv3qL9eYda/lIaUUpRoFUsyaBZHQIcEBUrCm/F1fZQoaAZoCWgPQwgp7KLogQ/wv5SGlFKUaBVLMmgWR0CHAw9Oh0yQdX2UKGgGaAloD0MIIO9VKxN+0b+UhpRSlGgVSzJoFkdAhwIcophF3XV9lChoBmgJaA9DCOcXJegvdOu/lIaUUpRoFUsyaBZHQIcIbjkuHvd1fZQoaAZoCWgPQwg1DB8RU6Lgv5SGlFKUaBVLMmgWR0CHB3xWkrPMdX2UKGgGaAloD0MI+gs9YvTc27+UhpRSlGgVSzJoFkdAhwaGUGFBY3V9lChoBmgJaA9DCGSUZ14Ou9a/lIaUUpRoFUsyaBZHQIcFk8eS0Sh1fZQoaAZoCWgPQwinzTgNUQXlv5SGlFKUaBVLMmgWR0CHDD6NVBD5dX2UKGgGaAloD0MIOIQqNXug2L+UhpRSlGgVSzJoFkdAhwtMyi22HHV9lChoBmgJaA9DCNE96xoth+S/lIaUUpRoFUsyaBZHQIcKVuejEeh1fZQoaAZoCWgPQwijkc8rnnrtv5SGlFKUaBVLMmgWR0CHCWQ9RrJsdX2UKGgGaAloD0MIxYzw9iCE4b+UhpRSlGgVSzJoFkdAhw/M5fdAPnV9lChoBmgJaA9DCO0Q/7ClR9y/lIaUUpRoFUsyaBZHQIcO2yRjjJd1fZQoaAZoCWgPQwh+AFKbODnpv5SGlFKUaBVLMmgWR0CHDeUpNKywdX2UKGgGaAloD0MIou9uZYnO27+UhpRSlGgVSzJoFkdAhwzymqHXVnV9lChoBmgJaA9DCI4glWJHY+S/lIaUUpRoFUsyaBZHQIcTYlruYyB1fZQoaAZoCWgPQwgs8YCyKVflv5SGlFKUaBVLMmgWR0CHEnCw8nuzdX2UKGgGaAloD0MIRkCFI0il2L+UhpRSlGgVSzJoFkdAhxF6n752yXV9lChoBmgJaA9DCLxXrUz4pd2/lIaUUpRoFUsyaBZHQIcQh84Pwux1fZQoaAZoCWgPQwgUl+MViJ7nv5SGlFKUaBVLMmgWR0CHFvfZ26kJdX2UKGgGaAloD0MIQMObNXhf3b+UhpRSlGgVSzJoFkdAhxYF6AvtdHV9lChoBmgJaA9DCLyQDg9h/NO/lIaUUpRoFUsyaBZHQIcVD+YMOPN1fZQoaAZoCWgPQwietdsuNNfdv5SGlFKUaBVLMmgWR0CHFB0XgtOEdX2UKGgGaAloD0MIfLd546Qw4b+UhpRSlGgVSzJoFkdAhxrFMIu5BnV9lChoBmgJaA9DCBu9GqA01OG/lIaUUpRoFUsyaBZHQIcZ1O0svqV1fZQoaAZoCWgPQwjmQA+1bZjjv5SGlFKUaBVLMmgWR0CHGN75VOsUdX2UKGgGaAloD0MI+aHSiJl92L+UhpRSlGgVSzJoFkdAhxfsNMGorHV9lChoBmgJaA9DCB8uOe6Ujue/lIaUUpRoFUsyaBZHQIcehkiD/VB1fZQoaAZoCWgPQwj5ghYSMLrbv5SGlFKUaBVLMmgWR0CHHZSH/LkkdX2UKGgGaAloD0MIeGNBYVCm3L+UhpRSlGgVSzJoFkdAhxyehf0Eo3V9lChoBmgJaA9DCPjddMsO8dq/lIaUUpRoFUsyaBZHQIcbq9/SYw91fZQoaAZoCWgPQwjCilOthdniv5SGlFKUaBVLMmgWR0CHIiD6nBLxdX2UKGgGaAloD0MI/bs+c9Yn6L+UhpRSlGgVSzJoFkdAhyEvAXVLBnV9lChoBmgJaA9DCH/fv3lxYua/lIaUUpRoFUsyaBZHQIcgOnfl6qt1fZQoaAZoCWgPQwirsu+K4H/jv5SGlFKUaBVLMmgWR0CHH0eq7yxzdX2UKGgGaAloD0MIZ/LNNjem4r+UhpRSlGgVSzJoFkdAhyWKZ+hGpnV9lChoBmgJaA9DCFyOVyB60u+/lIaUUpRoFUsyaBZHQIckmHLzPKN1fZQoaAZoCWgPQwhkA+li00rjv5SGlFKUaBVLMmgWR0CHI6KG+K0ldX2UKGgGaAloD0MIiulCrP4I2b+UhpRSlGgVSzJoFkdAhyKvz4DcM3V9lChoBmgJaA9DCAahvI+jOeW/lIaUUpRoFUsyaBZHQIco9bs4T9N1fZQoaAZoCWgPQwhzLO+qB8zjv5SGlFKUaBVLMmgWR0CHKAPp6hQFdX2UKGgGaAloD0MIxeV4BaIn4r+UhpRSlGgVSzJoFkdAhycN52QnyHV9lChoBmgJaA9DCIEiFjHsMOG/lIaUUpRoFUsyaBZHQIcmG1+iJwd1fZQoaAZoCWgPQwirevmdJjPmv5SGlFKUaBVLMmgWR0CHLGtQKrq/dX2UKGgGaAloD0MIF7zoK0gz4b+UhpRSlGgVSzJoFkdAhyt5nDiwS3V9lChoBmgJaA9DCMiUD0HV6NG/lIaUUpRoFUsyaBZHQIcqg7YChex1fZQoaAZoCWgPQwhy32qduBzpv5SGlFKUaBVLMmgWR0CHKZE87p3YdX2UKGgGaAloD0MIFOeoo+Nq6r+UhpRSlGgVSzJoFkdAhy/OGTLW7XV9lChoBmgJaA9DCKzgtyHGa9q/lIaUUpRoFUsyaBZHQIcu3E0iyIJ1fZQoaAZoCWgPQwgWokPgSKDVv5SGlFKUaBVLMmgWR0CHLeZgG8mKdX2UKGgGaAloD0MIcuFASBaw6L+UhpRSlGgVSzJoFkdAhyzzyrgfl3V9lChoBmgJaA9DCP0WnSy1Xue/lIaUUpRoFUsyaBZHQIczWm51/2F1fZQoaAZoCWgPQwhXeJeL+M7lv5SGlFKUaBVLMmgWR0CHMmiV0Lc9dX2UKGgGaAloD0MI51QyAFRx1b+UhpRSlGgVSzJoFkdAhzFySvC/GnV9lChoBmgJaA9DCIgs0sQ7wNy/lIaUUpRoFUsyaBZHQIcwf4TK1Xx1fZQoaAZoCWgPQwjvHMpQFVPiv5SGlFKUaBVLMmgWR0CHNtXXAdn1dX2UKGgGaAloD0MIWoC21awz4b+UhpRSlGgVSzJoFkdAhzXkF4cFQnV9lChoBmgJaA9DCCP5SiAldtq/lIaUUpRoFUsyaBZHQIc07dtVJcx1fZQoaAZoCWgPQwhrYRbaOU3hv5SGlFKUaBVLMmgWR0CHM/sgMc6vdX2UKGgGaAloD0MILzVCP1Ov0r+UhpRSlGgVSzJoFkdAhzpCm/FirnV9lChoBmgJaA9DCIpVgzC3e9e/lIaUUpRoFUsyaBZHQIc5UGxD9fl1fZQoaAZoCWgPQwjMQGX8+wzmv5SGlFKUaBVLMmgWR0CHOFotcv/SdX2UKGgGaAloD0MI7E53nnjO2r+UhpRSlGgVSzJoFkdAhzdna37UG3V9lChoBmgJaA9DCD3uW60Tl9y/lIaUUpRoFUsyaBZHQIc90qBmPHV1fZQoaAZoCWgPQwj9a3nletvdv5SGlFKUaBVLMmgWR0CHPODbJwKjdX2UKGgGaAloD0MI4syv5gDB3b+UhpRSlGgVSzJoFkdAhzvqoZQ53nV9lChoBmgJaA9DCPSMfcnGA+C/lIaUUpRoFUsyaBZHQIc697pmmLt1fZQoaAZoCWgPQwhXsfhNYaXXv5SGlFKUaBVLMmgWR0CHQTkU9IPLdX2UKGgGaAloD0MIqDXNO07R17+UhpRSlGgVSzJoFkdAh0BHWattAXV9lChoBmgJaA9DCJ8FobyPo9q/lIaUUpRoFUsyaBZHQIc/UTL4etF1fZQoaAZoCWgPQwg7jEl/LwXkv5SGlFKUaBVLMmgWR0CHPl59E1EWdX2UKGgGaAloD0MIie3uAbov3L+UhpRSlGgVSzJoFkdAh0TtTLns9nV9lChoBmgJaA9DCJtZSwFpf+u/lIaUUpRoFUsyaBZHQIdD/Qv6CUZ1fZQoaAZoCWgPQwica5ih8UTlv5SGlFKUaBVLMmgWR0CHQwbExZdOdX2UKGgGaAloD0MIEwoRcAjV4b+UhpRSlGgVSzJoFkdAh0IUSZjQRnV9lChoBmgJaA9DCJ25h4Tv/d2/lIaUUpRoFUsyaBZHQIdIoT238XN1fZQoaAZoCWgPQwh2w7ZFmQ3gv5SGlFKUaBVLMmgWR0CHR69US7GvdX2UKGgGaAloD0MIiGTIsfUM4r+UhpRSlGgVSzJoFkdAh0a5ULlV+HV9lChoBmgJaA9DCHuEmiFVFOS/lIaUUpRoFUsyaBZHQIdFyEJ0GNd1fZQoaAZoCWgPQwime53Ul6XYv5SGlFKUaBVLMmgWR0CHS/O2RaHLdX2UKGgGaAloD0MIS+SCM/j737+UhpRSlGgVSzJoFkdAh0sB7eEZi3V9lChoBmgJaA9DCMYX7fFCOuC/lIaUUpRoFUsyaBZHQIdKDFCLMs91fZQoaAZoCWgPQwhHO2743XTev5SGlFKUaBVLMmgWR0CHSRnjhky2dX2UKGgGaAloD0MIzLipgeZz5r+UhpRSlGgVSzJoFkdAh09YtpVS43V9lChoBmgJaA9DCC++aI8XUuW/lIaUUpRoFUsyaBZHQIdOZs0pEx91fZQoaAZoCWgPQwicbW5MT1jiv5SGlFKUaBVLMmgWR0CHTXDR+jM3dX2UKGgGaAloD0MIxofZy7bT27+UhpRSlGgVSzJoFkdAh0x+FDfFaXV9lChoBmgJaA9DCKHyr+WV6+C/lIaUUpRoFUsyaBZHQIdSuvllsgx1fZQoaAZoCWgPQwgYzF8hc+Xlv5SGlFKUaBVLMmgWR0CHUckAPuohdX2UKGgGaAloD0MICFbVy+800r+UhpRSlGgVSzJoFkdAh1DS75Ec83V9lChoBmgJaA9DCCE/G7luSuW/lIaUUpRoFUsyaBZHQIdP4D1XeWR1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 18200,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f404116e17f3dd098061b14ddec6b471326cb9794ef623455751af2892e85500
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2edbfd789c8537961f1b28487ce27c258b3129e3a9577c8a11c0ad849465755
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:435487ea2e080efa73fc8e78388e14050c53dfafcb9d37f463868880f8f88e23
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60576dc5f35d90d392412bcfb92618831d5e9f3829f33e473a882c63e7e01f67
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f14aaeb2550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f14aae99d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 20, "_total_timesteps": 5, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675493536880407957, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKoTYP4kSHkCffkS+mIAnwPOhHz55kQHAlXDiPvrOUD8WKfe/kU43vxlUH8DJEhq/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjuPkurh01r+x+Wu+d+HQv6WV/j5DYMy9o+lTP1VTcT9+acc/kExOP1YucT5nI52/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAqhNg/iRIeQJ9+RL4oK0Q8sY91P2z/LL6YgCfA86EfPnmRAcADBQzAyJByPzimnD+VcOI++s5QPxYp97/FT5e+DJhOP+peqL+RTje/GVQfwMkSGr80ZwFAZXHmvUSiAz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.6915333 2.4698813 -0.19188927]\n [-2.6172237 0.15589122 -2.024504 ]\n [ 0.44226518 0.8156582 -1.9309413 ]\n [-0.7160426 -2.489508 -0.60184914]]", "desired_goal": "[[-0.00174628 -1.675437 -0.23044468]\n [-1.6318806 0.49723545 -0.09979298]\n [ 0.82778376 0.9426778 1.5579069 ]\n [ 0.80585575 0.23552832 -1.2276429 ]]", "observation": "[[ 1.6915333 2.4698813 -0.19188927 0.01197318 0.9592238 -0.1689431 ]\n [-2.6172237 0.15589122 -2.024504 -2.187806 0.9475217 1.2238226 ]\n [ 0.44226518 0.8156582 -1.9309413 -0.29553047 0.80700755 -1.3153965 ]\n [-0.7160426 -2.489508 -0.60184914 2.021924 -0.11252097 0.5141947 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARySCPRxPFL6+D9k92OuXvWavoj1a/u09ftYIPgVtAD4Dyns+1fAGPnG4Vj3CMOU8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06354576 -0.14483303 0.10598706]\n [-0.07418031 0.07943611 0.11620779]\n [ 0.13363072 0.12541588 0.2458878 ]\n [ 0.13177808 0.05242199 0.02797735]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f14aaeb2550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f14aae99d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 364000, "_total_timesteps": 364000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673993641801467968, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo2fCPnJL17yT4g4/o2fCPnJL17yT4g4/o2fCPnJL17yT4g4/o2fCPnJL17yT4g4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE93Ov7HKzT6GZR0/1FsYP//Vgr52qxG/kmxKv1mis74opbO/EyV1P7oHyb/47r8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyjZ8I+ckvXvJPiDj93aU68CrRzu/BeAzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37969694 -0.02628109 0.55814475]\n [ 0.37969694 -0.02628109 0.55814475]\n [ 0.37969694 -0.02628109 0.55814475]\n [ 0.37969694 -0.02628109 0.55814475]]", "desired_goal": "[[-1.6161216 0.40193704 0.6148304 ]\n [ 0.5951512 -0.2555389 -0.56902254]\n [-0.79071915 -0.350848 -1.4034777 ]\n [ 0.95759696 -1.5705483 0.37487006]]", "observation": "[[ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]\n [ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]\n [ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]\n [ 0.37969694 -0.02628109 0.55814475 -0.01259839 -0.00371862 0.00801824]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMcEMPm/z5j0Lrow+gR0YPnEErj2tbGs+Z+mRvdo+gL296wY+/2sHPhm7gbxBxUI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13745572 0.112769 0.27476534]\n [ 0.14855005 0.08496941 0.22990675]\n [-0.07124596 -0.06261988 0.13175865]\n [ 0.13224791 -0.01583629 0.0475514 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISP31Cgvu37+UhpRSlIwBbJRLMowBdJRHQIb+EtPHktF1fZQoaAZoCWgPQwggXtcv2A3pv5SGlFKUaBVLMmgWR0CG/SETQE6ldX2UKGgGaAloD0MIpaSHodXJ1r+UhpRSlGgVSzJoFkdAhvwrEk0JnnV9lChoBmgJaA9DCJbOh2cJsuW/lIaUUpRoFUsyaBZHQIb7OZPVNHp1fZQoaAZoCWgPQwgyIlFoWffgv5SGlFKUaBVLMmgWR0CHAYZrHlwMdX2UKGgGaAloD0MILexph78m3L+UhpRSlGgVSzJoFkdAhwCUliSaE3V9lChoBmgJaA9DCJ8hHLPsifC/lIaUUpRoFUsyaBZHQIb/nqqwQlN1fZQoaAZoCWgPQwiHU+bmG9Hov5SGlFKUaBVLMmgWR0CG/qvwmVqvdX2UKGgGaAloD0MIHjNQGf++6L+UhpRSlGgVSzJoFkdAhwT3LV4HHHV9lChoBmgJaA9DCNv3qL9eYda/lIaUUpRoFUsyaBZHQIcEBUrCm/F1fZQoaAZoCWgPQwgp7KLogQ/wv5SGlFKUaBVLMmgWR0CHAw9Oh0yQdX2UKGgGaAloD0MIIO9VKxN+0b+UhpRSlGgVSzJoFkdAhwIcophF3XV9lChoBmgJaA9DCOcXJegvdOu/lIaUUpRoFUsyaBZHQIcIbjkuHvd1fZQoaAZoCWgPQwg1DB8RU6Lgv5SGlFKUaBVLMmgWR0CHB3xWkrPMdX2UKGgGaAloD0MI+gs9YvTc27+UhpRSlGgVSzJoFkdAhwaGUGFBY3V9lChoBmgJaA9DCGSUZ14Ou9a/lIaUUpRoFUsyaBZHQIcFk8eS0Sh1fZQoaAZoCWgPQwinzTgNUQXlv5SGlFKUaBVLMmgWR0CHDD6NVBD5dX2UKGgGaAloD0MIOIQqNXug2L+UhpRSlGgVSzJoFkdAhwtMyi22HHV9lChoBmgJaA9DCNE96xoth+S/lIaUUpRoFUsyaBZHQIcKVuejEeh1fZQoaAZoCWgPQwijkc8rnnrtv5SGlFKUaBVLMmgWR0CHCWQ9RrJsdX2UKGgGaAloD0MIxYzw9iCE4b+UhpRSlGgVSzJoFkdAhw/M5fdAPnV9lChoBmgJaA9DCO0Q/7ClR9y/lIaUUpRoFUsyaBZHQIcO2yRjjJd1fZQoaAZoCWgPQwh+AFKbODnpv5SGlFKUaBVLMmgWR0CHDeUpNKywdX2UKGgGaAloD0MIou9uZYnO27+UhpRSlGgVSzJoFkdAhwzymqHXVnV9lChoBmgJaA9DCI4glWJHY+S/lIaUUpRoFUsyaBZHQIcTYlruYyB1fZQoaAZoCWgPQwgs8YCyKVflv5SGlFKUaBVLMmgWR0CHEnCw8nuzdX2UKGgGaAloD0MIRkCFI0il2L+UhpRSlGgVSzJoFkdAhxF6n752yXV9lChoBmgJaA9DCLxXrUz4pd2/lIaUUpRoFUsyaBZHQIcQh84Pwux1fZQoaAZoCWgPQwgUl+MViJ7nv5SGlFKUaBVLMmgWR0CHFvfZ26kJdX2UKGgGaAloD0MIQMObNXhf3b+UhpRSlGgVSzJoFkdAhxYF6AvtdHV9lChoBmgJaA9DCLyQDg9h/NO/lIaUUpRoFUsyaBZHQIcVD+YMOPN1fZQoaAZoCWgPQwietdsuNNfdv5SGlFKUaBVLMmgWR0CHFB0XgtOEdX2UKGgGaAloD0MIfLd546Qw4b+UhpRSlGgVSzJoFkdAhxrFMIu5BnV9lChoBmgJaA9DCBu9GqA01OG/lIaUUpRoFUsyaBZHQIcZ1O0svqV1fZQoaAZoCWgPQwjmQA+1bZjjv5SGlFKUaBVLMmgWR0CHGN75VOsUdX2UKGgGaAloD0MI+aHSiJl92L+UhpRSlGgVSzJoFkdAhxfsNMGorHV9lChoBmgJaA9DCB8uOe6Ujue/lIaUUpRoFUsyaBZHQIcehkiD/VB1fZQoaAZoCWgPQwj5ghYSMLrbv5SGlFKUaBVLMmgWR0CHHZSH/LkkdX2UKGgGaAloD0MIeGNBYVCm3L+UhpRSlGgVSzJoFkdAhxyehf0Eo3V9lChoBmgJaA9DCPjddMsO8dq/lIaUUpRoFUsyaBZHQIcbq9/SYw91fZQoaAZoCWgPQwjCilOthdniv5SGlFKUaBVLMmgWR0CHIiD6nBLxdX2UKGgGaAloD0MI/bs+c9Yn6L+UhpRSlGgVSzJoFkdAhyEvAXVLBnV9lChoBmgJaA9DCH/fv3lxYua/lIaUUpRoFUsyaBZHQIcgOnfl6qt1fZQoaAZoCWgPQwirsu+K4H/jv5SGlFKUaBVLMmgWR0CHH0eq7yxzdX2UKGgGaAloD0MIZ/LNNjem4r+UhpRSlGgVSzJoFkdAhyWKZ+hGpnV9lChoBmgJaA9DCFyOVyB60u+/lIaUUpRoFUsyaBZHQIckmHLzPKN1fZQoaAZoCWgPQwhkA+li00rjv5SGlFKUaBVLMmgWR0CHI6KG+K0ldX2UKGgGaAloD0MIiulCrP4I2b+UhpRSlGgVSzJoFkdAhyKvz4DcM3V9lChoBmgJaA9DCAahvI+jOeW/lIaUUpRoFUsyaBZHQIco9bs4T9N1fZQoaAZoCWgPQwhzLO+qB8zjv5SGlFKUaBVLMmgWR0CHKAPp6hQFdX2UKGgGaAloD0MIxeV4BaIn4r+UhpRSlGgVSzJoFkdAhycN52QnyHV9lChoBmgJaA9DCIEiFjHsMOG/lIaUUpRoFUsyaBZHQIcmG1+iJwd1fZQoaAZoCWgPQwirevmdJjPmv5SGlFKUaBVLMmgWR0CHLGtQKrq/dX2UKGgGaAloD0MIF7zoK0gz4b+UhpRSlGgVSzJoFkdAhyt5nDiwS3V9lChoBmgJaA9DCMiUD0HV6NG/lIaUUpRoFUsyaBZHQIcqg7YChex1fZQoaAZoCWgPQwhy32qduBzpv5SGlFKUaBVLMmgWR0CHKZE87p3YdX2UKGgGaAloD0MIFOeoo+Nq6r+UhpRSlGgVSzJoFkdAhy/OGTLW7XV9lChoBmgJaA9DCKzgtyHGa9q/lIaUUpRoFUsyaBZHQIcu3E0iyIJ1fZQoaAZoCWgPQwgWokPgSKDVv5SGlFKUaBVLMmgWR0CHLeZgG8mKdX2UKGgGaAloD0MIcuFASBaw6L+UhpRSlGgVSzJoFkdAhyzzyrgfl3V9lChoBmgJaA9DCP0WnSy1Xue/lIaUUpRoFUsyaBZHQIczWm51/2F1fZQoaAZoCWgPQwhXeJeL+M7lv5SGlFKUaBVLMmgWR0CHMmiV0Lc9dX2UKGgGaAloD0MI51QyAFRx1b+UhpRSlGgVSzJoFkdAhzFySvC/GnV9lChoBmgJaA9DCIgs0sQ7wNy/lIaUUpRoFUsyaBZHQIcwf4TK1Xx1fZQoaAZoCWgPQwjvHMpQFVPiv5SGlFKUaBVLMmgWR0CHNtXXAdn1dX2UKGgGaAloD0MIWoC21awz4b+UhpRSlGgVSzJoFkdAhzXkF4cFQnV9lChoBmgJaA9DCCP5SiAldtq/lIaUUpRoFUsyaBZHQIc07dtVJcx1fZQoaAZoCWgPQwhrYRbaOU3hv5SGlFKUaBVLMmgWR0CHM/sgMc6vdX2UKGgGaAloD0MILzVCP1Ov0r+UhpRSlGgVSzJoFkdAhzpCm/FirnV9lChoBmgJaA9DCIpVgzC3e9e/lIaUUpRoFUsyaBZHQIc5UGxD9fl1fZQoaAZoCWgPQwjMQGX8+wzmv5SGlFKUaBVLMmgWR0CHOFotcv/SdX2UKGgGaAloD0MI7E53nnjO2r+UhpRSlGgVSzJoFkdAhzdna37UG3V9lChoBmgJaA9DCD3uW60Tl9y/lIaUUpRoFUsyaBZHQIc90qBmPHV1fZQoaAZoCWgPQwj9a3nletvdv5SGlFKUaBVLMmgWR0CHPODbJwKjdX2UKGgGaAloD0MI4syv5gDB3b+UhpRSlGgVSzJoFkdAhzvqoZQ53nV9lChoBmgJaA9DCPSMfcnGA+C/lIaUUpRoFUsyaBZHQIc697pmmLt1fZQoaAZoCWgPQwhXsfhNYaXXv5SGlFKUaBVLMmgWR0CHQTkU9IPLdX2UKGgGaAloD0MIqDXNO07R17+UhpRSlGgVSzJoFkdAh0BHWattAXV9lChoBmgJaA9DCJ8FobyPo9q/lIaUUpRoFUsyaBZHQIc/UTL4etF1fZQoaAZoCWgPQwg7jEl/LwXkv5SGlFKUaBVLMmgWR0CHPl59E1EWdX2UKGgGaAloD0MIie3uAbov3L+UhpRSlGgVSzJoFkdAh0TtTLns9nV9lChoBmgJaA9DCJtZSwFpf+u/lIaUUpRoFUsyaBZHQIdD/Qv6CUZ1fZQoaAZoCWgPQwica5ih8UTlv5SGlFKUaBVLMmgWR0CHQwbExZdOdX2UKGgGaAloD0MIEwoRcAjV4b+UhpRSlGgVSzJoFkdAh0IUSZjQRnV9lChoBmgJaA9DCJ25h4Tv/d2/lIaUUpRoFUsyaBZHQIdIoT238XN1fZQoaAZoCWgPQwh2w7ZFmQ3gv5SGlFKUaBVLMmgWR0CHR69US7GvdX2UKGgGaAloD0MIiGTIsfUM4r+UhpRSlGgVSzJoFkdAh0a5ULlV+HV9lChoBmgJaA9DCHuEmiFVFOS/lIaUUpRoFUsyaBZHQIdFyEJ0GNd1fZQoaAZoCWgPQwime53Ul6XYv5SGlFKUaBVLMmgWR0CHS/O2RaHLdX2UKGgGaAloD0MIS+SCM/j737+UhpRSlGgVSzJoFkdAh0sB7eEZi3V9lChoBmgJaA9DCMYX7fFCOuC/lIaUUpRoFUsyaBZHQIdKDFCLMs91fZQoaAZoCWgPQwhHO2743XTev5SGlFKUaBVLMmgWR0CHSRnjhky2dX2UKGgGaAloD0MIzLipgeZz5r+UhpRSlGgVSzJoFkdAh09YtpVS43V9lChoBmgJaA9DCC++aI8XUuW/lIaUUpRoFUsyaBZHQIdOZs0pEx91fZQoaAZoCWgPQwicbW5MT1jiv5SGlFKUaBVLMmgWR0CHTXDR+jM3dX2UKGgGaAloD0MIxofZy7bT27+UhpRSlGgVSzJoFkdAh0x+FDfFaXV9lChoBmgJaA9DCKHyr+WV6+C/lIaUUpRoFUsyaBZHQIdSuvllsgx1fZQoaAZoCWgPQwgYzF8hc+Xlv5SGlFKUaBVLMmgWR0CHUckAPuohdX2UKGgGaAloD0MICFbVy+800r+UhpRSlGgVSzJoFkdAh1DS75Ec83V9lChoBmgJaA9DCCE/G7luSuW/lIaUUpRoFUsyaBZHQIdP4D1XeWR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 18200, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (289 kB). View file
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -10.542152157053351, "std_reward": 3.488461576127394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T06:52:46.689762"}
 
1
+ {"mean_reward": -0.4842373065417632, "std_reward": 0.2164433918506085, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T06:57:06.313599"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dced97a6b9a5a875b262e0f82811b669e2972252011397ae4d50caa5b3547661
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19232bfd818a0e148d11304c0145ddcd3088bc1c4da221738139d4173430167c
3
  size 3056