first commit
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +27 -27
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 296.31 +/- 13.37
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d44b80200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d44b80290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d44b80320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d44b803b0>", "_build": "<function ActorCriticPolicy._build at 0x7f9d44b80440>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d44b804d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d44b80560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d44b805f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d44b80680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d44b80710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d44b807a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d44bd6210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657573358.0613685, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAmlLvvD3UELtdiwc88+GnPLFrKjzAFZC9AACAPwAAgD8znRk9+RGrP+G4nj5UTd6+1tJWPWBjTD4AAAAAAAAAAE1R2L3K7iQ+jPu7POb4xr69tMO9P7s7PQAAAAAAAAAAAEBPvfRD3j6Gy/y8eWn7vv6HZ72i+zW9AAAAAAAAAAAzB+I81Q85P7bspr2yhRW/0QWePX6OtL0AAAAAAAAAALrym74Y0ec+ktcBPyVl977L71i+cISmPgAAAAAAAAAA82QCPhLlZz9g8lU9R54pv6NfkT5gj829AAAAAAAAAAAAHKS7pJ1nu9QpAD31GOI84m8kPY5hvb0AAIA/AACAP83DoL3DgXS6bhbVuNXwOrN9x9w6fkX3NwAAgD8AAIA/ZkS5vOyji7sewDw+tK0wPAQp4Lym1Ro9AACAPwAAgD/NTTW9rhGQurLhGjpBz0c1fae1ujYNTjQAAIA/AACAP81s7rvDJXO6GlobOOvhETOlFgE7oss1twAAgD8AAIA/cyfuvSgMdT8FZny+IOA2v/jbKb7wTZ+9AAAAAAAAAAAafa+9WjyyP+Ax7b66Z4a+7WC1vR7pe74AAAAAAAAAAJq+nrxEod89rsPXvRsysb7TY+y9F3A8vQAAAAAAAAAAps5Nvs9PrD/uIyW/fCj2vjGzq77PWIu+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaJPDJx1Cc0CUhpRSlIwBbJRL44wBdJRHQLSo4LBsQ/Z1fZQoaAZoCWgPQwgK98q8VchyQJSGlFKUaBVLwWgWR0C0qO8OPNmldX2UKGgGaAloD0MI9KYiFYZ9cUCUhpRSlGgVS8VoFkdAtKjvM0P6K3V9lChoBmgJaA9DCAjpKXIIZHBAlIaUUpRoFUu2aBZHQLSpJiaiKzl1fZQoaAZoCWgPQwiKIqRup1txQJSGlFKUaBVL0mgWR0C0qShagVXWdX2UKGgGaAloD0MINiIYB9eAckCUhpRSlGgVTQwBaBZHQLSpLB9Cu2Z1fZQoaAZoCWgPQwg17zhFxy1xQJSGlFKUaBVLzWgWR0C0qU36hxo7dX2UKGgGaAloD0MINlzknq5LckCUhpRSlGgVS9hoFkdAtKlydYnv2HV9lChoBmgJaA9DCOvHJvkR8HBAlIaUUpRoFUvBaBZHQLSpjuf29L91fZQoaAZoCWgPQwiSA3Y1eUJxQJSGlFKUaBVLzmgWR0C0qbYjfNzKdX2UKGgGaAloD0MI8UV7vFBIckCUhpRSlGgVS9NoFkdAtKmzHAAQx3V9lChoBmgJaA9DCLhYUYOpUHRAlIaUUpRoFUvRaBZHQLSpuAU+LWJ1fZQoaAZoCWgPQwiN0qV/SUtTQJSGlFKUaBVLpmgWR0C0qcS+QEIPdX2UKGgGaAloD0MI+ROVDSsCckCUhpRSlGgVTaEBaBZHQLSpxftQbdd1fZQoaAZoCWgPQwg/HCREOf1yQJSGlFKUaBVL52gWR0C0qeTFyaNNdX2UKGgGaAloD0MI+aHSiJlocECUhpRSlGgVS71oFkdAtKnoPUaybHV9lChoBmgJaA9DCCDwwAACsnNAlIaUUpRoFUvLaBZHQLSp8q6e5Fx1fZQoaAZoCWgPQwjzyB8MPBRyQJSGlFKUaBVL1GgWR0C0qhD/lyR0dX2UKGgGaAloD0MInkFD/8S5cECUhpRSlGgVS6doFkdAtKoRGax5cHV9lChoBmgJaA9DCBufyf750m9AlIaUUpRoFUvfaBZHQLSutJlJ6IF1fZQoaAZoCWgPQwhlGHeDKLVzQJSGlFKUaBVLvmgWR0C0rr2ZiNKidX2UKGgGaAloD0MI9dcrLDiVckCUhpRSlGgVS8BoFkdAtK7ByFPBSHV9lChoBmgJaA9DCDm2niGc8XFAlIaUUpRoFUvCaBZHQLSu5WcBltl1fZQoaAZoCWgPQwj6eyk86BNyQJSGlFKUaBVL02gWR0C0rx33Dej3dX2UKGgGaAloD0MIWvROBVyCcECUhpRSlGgVS8VoFkdAtK8k5+6RQ3V9lChoBmgJaA9DCDNuaqB5QHFAlIaUUpRoFUuoaBZHQLSvMAAhje91fZQoaAZoCWgPQwh1riglhHpzQJSGlFKUaBVLvWgWR0C0rz5+6RQrdX2UKGgGaAloD0MIqoHmc25bckCUhpRSlGgVS71oFkdAtK9Lsqril3V9lChoBmgJaA9DCM6luKpsWW9AlIaUUpRoFUvLaBZHQLSvUX9R77d1fZQoaAZoCWgPQwi7ZBwjWaJwQJSGlFKUaBVL0GgWR0C0r1O9rXUZdX2UKGgGaAloD0MIr0LKT6q3bkCUhpRSlGgVS7JoFkdAtK9gTewcHXV9lChoBmgJaA9DCBMNUvAU2nNAlIaUUpRoFUvPaBZHQLSvhCJGe+V1fZQoaAZoCWgPQwiYvWw7rbRxQJSGlFKUaBVL2mgWR0C0r5zLSuyNdX2UKGgGaAloD0MIv9cQHFfFcECUhpRSlGgVS8poFkdAtK+pDkU9IXV9lChoBmgJaA9DCHmu78PBlnJAlIaUUpRoFUvAaBZHQLSvqrkKeCl1fZQoaAZoCWgPQwh79Ib7CEVwQJSGlFKUaBVL1mgWR0C0r7gIldC3dX2UKGgGaAloD0MIkKFjBxUScUCUhpRSlGgVS8NoFkdAtK+3z+WGAXV9lChoBmgJaA9DCDntKTln5HFAlIaUUpRoFUuxaBZHQLSvyEzO5ax1fZQoaAZoCWgPQwgTfNP0mTxxQJSGlFKUaBVLzGgWR0C0r8hjz7MxdX2UKGgGaAloD0MIdha9U8GTcUCUhpRSlGgVS61oFkdAtK/9FXq7iHV9lChoBmgJaA9DCBe2ZivvZ3FAlIaUUpRoFUutaBZHQLSwJgTRIBl1fZQoaAZoCWgPQwgCnUmbKh1zQJSGlFKUaBVL3GgWR0C0sDecDr7gdX2UKGgGaAloD0MIB7R0BRufcUCUhpRSlGgVS7loFkdAtLA+HKwIMXV9lChoBmgJaA9DCFiNJawNfXJAlIaUUpRoFUvTaBZHQLSwPfdyksV1fZQoaAZoCWgPQwhh/3Vu2vJxQJSGlFKUaBVL4GgWR0C0sF2AoXsPdX2UKGgGaAloD0MIm+RH/AqmcECUhpRSlGgVS8xoFkdAtLBlt52Qn3V9lChoBmgJaA9DCBUDJJqAJ3FAlIaUUpRoFUuuaBZHQLSwj6mO2iN1fZQoaAZoCWgPQwgIPZtVn+xvQJSGlFKUaBVLuGgWR0C0sJ82NvOydX2UKGgGaAloD0MIG4LjMi4cc0CUhpRSlGgVS/5oFkdAtLCe+HrQgXV9lChoBmgJaA9DCCO70jLS2XBAlIaUUpRoFUvJaBZHQLSwqRUWEbp1fZQoaAZoCWgPQwh6jV2ieg5zQJSGlFKUaBVL5mgWR0C0sLRN7BwddX2UKGgGaAloD0MIETenkgHscECUhpRSlGgVS8JoFkdAtLDLah6By3V9lChoBmgJaA9DCLudfeUBk3JAlIaUUpRoFUvZaBZHQLSw2rpaA4J1fZQoaAZoCWgPQwhBLnHkwR1zQJSGlFKUaBVL02gWR0C0sONi+cpcdX2UKGgGaAloD0MIPSmTGlp6cUCUhpRSlGgVS+poFkdAtLDwxL0z03V9lChoBmgJaA9DCDgyj/wB/3BAlIaUUpRoFUvAaBZHQLSxAbEgntx1fZQoaAZoCWgPQwgK20/G+DNxQJSGlFKUaBVLqWgWR0C0sR9MsYl6dX2UKGgGaAloD0MIbR/ylivrc0CUhpRSlGgVS7toFkdAtLEhuXNTtXV9lChoBmgJaA9DCA9h/DSu2XFAlIaUUpRoFUuzaBZHQLSxLIg/1QJ1fZQoaAZoCWgPQwhFSx5Pi1RzQJSGlFKUaBVLzmgWR0C0sUdJz1brdX2UKGgGaAloD0MI8P0N2itickCUhpRSlGgVS9FoFkdAtLF5iExqPHV9lChoBmgJaA9DCJ0q3zOSo3NAlIaUUpRoFUvXaBZHQLSxeygPEsJ1fZQoaAZoCWgPQwiuga0S7G9yQJSGlFKUaBVLtWgWR0C0sX2VJL/TdX2UKGgGaAloD0MIG4Uks7rMcUCUhpRSlGgVS7RoFkdAtLGKj+Jgs3V9lChoBmgJaA9DCPNV8rH7UnBAlIaUUpRoFUu+aBZHQLSxl+0gKWt1fZQoaAZoCWgPQwj/W8mOTVxzQJSGlFKUaBVLtWgWR0C0sZVDfFaTdX2UKGgGaAloD0MIhjdr8H4uckCUhpRSlGgVS7hoFkdAtLHGTY/Vy3V9lChoBmgJaA9DCDSdnQzO83FAlIaUUpRoFUvlaBZHQLSx3xXGOuJ1fZQoaAZoCWgPQwiv6UFB6fZwQJSGlFKUaBVLt2gWR0C0se+CbtqpdX2UKGgGaAloD0MIqWis/R0VcUCUhpRSlGgVS9BoFkdAtLHwWZZ0S3V9lChoBmgJaA9DCI5zm3CvyXJAlIaUUpRoFUvlaBZHQLSx9ZcLSeB1fZQoaAZoCWgPQwiq8j0jkalxQJSGlFKUaBVLzmgWR0C0sfvoV2zOdX2UKGgGaAloD0MIjE0rhQCGcUCUhpRSlGgVS75oFkdAtLIUxagVXXV9lChoBmgJaA9DCE/LD1ylkHFAlIaUUpRoFUu9aBZHQLSyIAksz2x1fZQoaAZoCWgPQwiE1y5tOJ1uQJSGlFKUaBVLy2gWR0C0sibIT4+KdX2UKGgGaAloD0MIDaZh+IjAcECUhpRSlGgVS8BoFkdAtLJAWM0gsHV9lChoBmgJaA9DCPCjGvb70m5AlIaUUpRoFUu7aBZHQLSybvxYq5N1fZQoaAZoCWgPQwi+9zdob7ZxQJSGlFKUaBVL0GgWR0C0sothJAdGdX2UKGgGaAloD0MIcvp6vqa2ckCUhpRSlGgVS8hoFkdAtLKhrYXfqHV9lChoBmgJaA9DCN4gWisaxHJAlIaUUpRoFUvRaBZHQLSyoFkxyn11fZQoaAZoCWgPQwhExM2pJAtzQJSGlFKUaBVL5mgWR0C0srAtBfKIdX2UKGgGaAloD0MImQzH81k0ckCUhpRSlGgVS9hoFkdAtLK1zxPO6nV9lChoBmgJaA9DCAniPJzAvW9AlIaUUpRoFUu/aBZHQLSyydwvQF91fZQoaAZoCWgPQwi9iowOiPVzQJSGlFKUaBVLxWgWR0C0sudH2AXmdX2UKGgGaAloD0MIngyOkte8cUCUhpRSlGgVS8NoFkdAtLL3EfkmyHV9lChoBmgJaA9DCF+X4T+dT3JAlIaUUpRoFUu/aBZHQLSy/YJE6T51fZQoaAZoCWgPQwjakeo7vz1yQJSGlFKUaBVLyGgWR0C0sv2P91lodX2UKGgGaAloD0MIf4gNFk4TckCUhpRSlGgVS65oFkdAtLMC44Ia+HV9lChoBmgJaA9DCBMsDmd+JHJAlIaUUpRoFUvVaBZHQLSzE/Firkt1fZQoaAZoCWgPQwiPAG4WL1FyQJSGlFKUaBVL0WgWR0C0sztHDrJKdX2UKGgGaAloD0MIwM5Nm7EvcUCUhpRSlGgVS9doFkdAtLNKsmv4d3V9lChoBmgJaA9DCATLETJQYnFAlIaUUpRoFUu1aBZHQLSzYsRQJol1fZQoaAZoCWgPQwjcKR2sP+VzQJSGlFKUaBVL3mgWR0C0s24rnTy8dX2UKGgGaAloD0MI7ISX4BREckCUhpRSlGgVS8BoFkdAtLOOhwl0HXV9lChoBmgJaA9DCCcvMgF/LnFAlIaUUpRoFUu3aBZHQLSzl14gRsd1fZQoaAZoCWgPQwjoobYN47ZzQJSGlFKUaBVLvWgWR0C0s6wHJLdvdX2UKGgGaAloD0MIxvtx++Wec0CUhpRSlGgVS81oFkdAtLPHDCP6sXV9lChoBmgJaA9DCJwyN9/IOXJAlIaUUpRoFUvcaBZHQLSzxwGnn+11fZQoaAZoCWgPQwjPvBx2n3BzQJSGlFKUaBVLy2gWR0C0s9ejmCAddX2UKGgGaAloD0MIi4wOSIJEckCUhpRSlGgVS61oFkdAtLPjvqkdm3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1348, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2005530700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2005530790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2005530820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f20055308b0>", "_build": "<function ActorCriticPolicy._build at 0x7f2005530940>", "forward": "<function ActorCriticPolicy.forward at 0x7f20055309d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2005530a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2005530af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2005530b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2005530c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2005530ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2005532480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 50003968, "_total_timesteps": 50000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657583711.3025563, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9hdXRvd2luL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxVL2hvbWUvYXV0b3dpbi9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrYPD6oJuc+AGxevuY4Pb9d1J8+ELWivgAAAAAAAAAAzQQ4PD07ezy5GRi+JJfYva+47r3KBVo/AACAPwAAAABNUZa+4n2OP0shnr7t/yO/1B4Rv7b5iL4AAAAAAAAAAJqOSz2uZ/e4PQlKM1c76S5lvAa8MCjSswAAgD8AAIA/2ov+vdgfjz9s2IO+tjFYv/8FXr5pq5i+AAAAAAAAAADjJYc+2AHFPlUt/L7Bbjm/5SzIPZ4iv74AAAAAAAAAALpwIj7p+lK8KjVqOwpI1Lm9xbe9OEa2ugAAgD8AAIA/QO6JPojSjj8SNpw+/l4Zv2FAIz8d304+AAAAAAAAAADz0ZW9A8kIvB0pXT16Nhw9hl0ZvQjiDb0AAIA/AACAP2bCoDx2V0S85x8Fvjv8HzyLRmS8wx5/PAAAgD8AAIA/mq0DPXaIUrxIl/O9Q9//vHWjd73I03m9AACAPwAAgD9mUBG9aQytP7LceL67Dbm+EN6PvE+REL4AAAAAAAAAAM1X5D1bRLY9ChubvvYrCb9wGbm9inCOvgAAAAAAAAAAJqGBvUj/1brWqtg9ew/PPEP/DLy2C7E9AACAPwAAgD9mQvA8Mt2LP6bsnj1p5F2/rYJdPe7QrDwAAAAAAAAAAFpDNr5lowY/QHyFPQMyRL/KvqO+mDxwPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.935999999997279e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFNBE2DBrc0CUhpRSlIwBbJRLuYwBdJRHQNN+iAHAymB1fZQoaAZoCWgPQwhqiZXRiC9yQJSGlFKUaBVLe2gWR0DTfog8zQ/pdX2UKGgGaAloD0MIRPgXQeM1cECUhpRSlGgVS45oFkdA036KZBcAznV9lChoBmgJaA9DCEpATMKF1EBAlIaUUpRoFUt1aBZHQNN+i2LP2PF1fZQoaAZoCWgPQwh6jsh3KUxvQJSGlFKUaBVLlGgWR0DTfo2N4qwydX2UKGgGaAloD0MIO2743XTlb0CUhpRSlGgVS4RoFkdA036PxbB42XV9lChoBmgJaA9DCH506srnDHNAlIaUUpRoFUusaBZHQNN+kAbEP2B1fZQoaAZoCWgPQwidhT3t8GByQJSGlFKUaBVLqmgWR0DTfpFpSJj2dX2UKGgGaAloD0MIR4/f2zRUcUCUhpRSlGgVS6BoFkdA036S1jAi3XV9lChoBmgJaA9DCGed8X2xinNAlIaUUpRoFUunaBZHQNN+k7UPQOZ1fZQoaAZoCWgPQwjPvvIgPa1yQJSGlFKUaBVLimgWR0DTfpaR9w3pdX2UKGgGaAloD0MI0c5pFmjEckCUhpRSlGgVS5loFkdA036WuuA7P3V9lChoBmgJaA9DCE5fz9esMnFAlIaUUpRoFUugaBZHQNN+lxmoR7J1fZQoaAZoCWgPQwgrbtxiflVzQJSGlFKUaBVLkGgWR0DTfpxZW7vodX2UKGgGaAloD0MIYCFzZZC4ckCUhpRSlGgVS5loFkdA036fxwyZa3V9lChoBmgJaA9DCLEyGvm8gXBAlIaUUpRoFUuKaBZHQNN+oBQm/nJ1fZQoaAZoCWgPQwgW+IpuPbtyQJSGlFKUaBVLqWgWR0DTfqITDfm+dX2UKGgGaAloD0MI0PHR4gyrcECUhpRSlGgVS4poFkdA036jcENe+nV9lChoBmgJaA9DCOJ2aFhMnXJAlIaUUpRoFUusaBZHQNN+pmBvrGB1fZQoaAZoCWgPQwhHq1rS0c9yQJSGlFKUaBVLkmgWR0DTfqci/wiJdX2UKGgGaAloD0MInuqQm+HyckCUhpRSlGgVS4ZoFkdA036qfLLZBnV9lChoBmgJaA9DCAclzLS9PXNAlIaUUpRoFUuaaBZHQNN+qujRD1J1fZQoaAZoCWgPQwgJih9j7oBzQJSGlFKUaBVLn2gWR0DTfqwIsyzpdX2UKGgGaAloD0MIyR6hZsjGc0CUhpRSlGgVS8RoFkdA036s7DVH4HV9lChoBmgJaA9DCMri/iOTVnFAlIaUUpRoFUuZaBZHQNN+rqKtPpJ1fZQoaAZoCWgPQwjxuKgWUVBzQJSGlFKUaBVLrGgWR0DTfq+VZ9uxdX2UKGgGaAloD0MIc9U8R2SRcECUhpRSlGgVS5NoFkdA036wVz6rNnV9lChoBmgJaA9DCJSFr6+14HBAlIaUUpRoFUucaBZHQNN+skQoTf11fZQoaAZoCWgPQwg4SIjyBVJyQJSGlFKUaBVLqWgWR0DTfrQQvpQldX2UKGgGaAloD0MIlltaDYn4ckCUhpRSlGgVS5BoFkdA0365JGe+VXV9lChoBmgJaA9DCOj6PhxkoXJAlIaUUpRoFUunaBZHQNN+uemFajh1fZQoaAZoCWgPQwg0hGOWPeBxQJSGlFKUaBVLgWgWR0DTfrotbs4UdX2UKGgGaAloD0MIU5YhjrX9cUCUhpRSlGgVS39oFkdA0369dKNADHV9lChoBmgJaA9DCGaiCKkbqXNAlIaUUpRoFUuoaBZHQNN+vdN8E3d1fZQoaAZoCWgPQwjYYUz6OyN0QJSGlFKUaBVLrGgWR0DTfsCJZW7wdX2UKGgGaAloD0MITWcng+NJcUCUhpRSlGgVS4NoFkdA037EDUmUn3V9lChoBmgJaA9DCKiKqfTTbXNAlIaUUpRoFUuhaBZHQNN+x4EW69V1fZQoaAZoCWgPQwi7YduiTMVxQJSGlFKUaBVLn2gWR0DTfshP8AJcdX2UKGgGaAloD0MIw7zHmSaJcUCUhpRSlGgVS5FoFkdA037IoN/e+HV9lChoBmgJaA9DCGK+vAA773JAlIaUUpRoFUuuaBZHQNN+yYx+KCR1fZQoaAZoCWgPQwjRPIBFPoNwQJSGlFKUaBVLmGgWR0DTfsrgAIY4dX2UKGgGaAloD0MIkjtsIvM9ckCUhpRSlGgVS51oFkdA037OyuIRAnV9lChoBmgJaA9DCM2wUdZvbXNAlIaUUpRoFUuTaBZHQNN+zvg3tKJ1fZQoaAZoCWgPQwi610l92QtzQJSGlFKUaBVLumgWR0DTftHitJWedX2UKGgGaAloD0MI+Um1T4c+cECUhpRSlGgVS5FoFkdA037ThaTwD3V9lChoBmgJaA9DCHpuoSuRtHBAlIaUUpRoFUuNaBZHQNN+08tPHkt1fZQoaAZoCWgPQwhvfy4a8thxQJSGlFKUaBVLomgWR0DTftcoG6f8dX2UKGgGaAloD0MIntMs0K6BcUCUhpRSlGgVS5doFkdA037YsGPgenV9lChoBmgJaA9DCAfOGVEajHNAlIaUUpRoFUucaBZHQNN+2eZ5Rj11fZQoaAZoCWgPQwgJ4dHGkXZwQJSGlFKUaBVLf2gWR0DTftrM/yG0dX2UKGgGaAloD0MIyQBQxY19ckCUhpRSlGgVS6JoFkdA037dfCQ9zXV9lChoBmgJaA9DCDZy3ZSyM3JAlIaUUpRoFUuFaBZHQNN+38zVMEl1fZQoaAZoCWgPQwiqRxrc1h5wQJSGlFKUaBVLj2gWR0DTfuDNbC79dX2UKGgGaAloD0MILgQ5KKEsckCUhpRSlGgVS41oFkdA037hfYjB23V9lChoBmgJaA9DCEvoLonzbHJAlIaUUpRoFUuTaBZHQNN+42oJiRZ1fZQoaAZoCWgPQwhmu0IfLC1xQJSGlFKUaBVLnWgWR0DTfuZoUSIydX2UKGgGaAloD0MIrG9gciPzbkCUhpRSlGgVS4VoFkdA037rKiwjdHV9lChoBmgJaA9DCOjdWFCYEXNAlIaUUpRoFUujaBZHQNN+68kQf6p1fZQoaAZoCWgPQwixh/axgjdxQJSGlFKUaBVLqWgWR0DTfuzP/rB1dX2UKGgGaAloD0MIcOzZcxkZcUCUhpRSlGgVS5loFkdA037tCBwuNHV9lChoBmgJaA9DCLafjPEhsXBAlIaUUpRoFUuGaBZHQNN+7yVObiJ1fZQoaAZoCWgPQwhTXiuhe35yQJSGlFKUaBVLq2gWR0DTfvIYj0L/dX2UKGgGaAloD0MIABx79lygcECUhpRSlGgVS5doFkdA0371PTodMnV9lChoBmgJaA9DCA1v1uB9KXJAlIaUUpRoFUuraBZHQNN+97xRVIZ1fZQoaAZoCWgPQwiKd4AnrSpyQJSGlFKUaBVLo2gWR0DTfvigOBlMdX2UKGgGaAloD0MIck2BzI7jcUCUhpRSlGgVS4JoFkdA0375xYq5LHV9lChoBmgJaA9DCGe5bHSO13BAlIaUUpRoFUuJaBZHQNN++mRigCh1fZQoaAZoCWgPQwi1a0Jao+lxQJSGlFKUaBVLf2gWR0DTfvtJmNBGdX2UKGgGaAloD0MIYAK37magc0CUhpRSlGgVS6loFkdA0378y9mHxnV9lChoBmgJaA9DCKg4DrxaInJAlIaUUpRoFUumaBZHQNN+/pZGKAJ1fZQoaAZoCWgPQwhck25LZCFzQJSGlFKUaBVLqmgWR0DTfwbU7Sy/dX2UKGgGaAloD0MId50N+efpcECUhpRSlGgVS41oFkdA038H35N47nV9lChoBmgJaA9DCAFr1a5JcnNAlIaUUpRoFUuaaBZHQNN/CY3FUAF1fZQoaAZoCWgPQwhAaD18GWhzQJSGlFKUaBVLp2gWR0DTfwufBeoldX2UKGgGaAloD0MIda29T9Xuc0CUhpRSlGgVS6VoFkdA038NHNHH3nV9lChoBmgJaA9DCEoH6/+cBXJAlIaUUpRoFUupaBZHQNN/EDMaCMB1fZQoaAZoCWgPQwgCnUmbKu1vQJSGlFKUaBVLhWgWR0DTfxIgNgBtdX2UKGgGaAloD0MIcNBefbw9c0CUhpRSlGgVS7JoFkdA038VEm6XjXV9lChoBmgJaA9DCMV29wCdgnNAlIaUUpRoFUuiaBZHQNN/FT7hvR91fZQoaAZoCWgPQwj5S4v6ZC50QJSGlFKUaBVLmGgWR0DTfxadXko4dX2UKGgGaAloD0MI9NxCV+LRcUCUhpRSlGgVS5JoFkdA038Wiw0O3HV9lChoBmgJaA9DCPVoqidzYnJAlIaUUpRoFUuDaBZHQNN/FtKIznB1fZQoaAZoCWgPQwiqtwa2CmVxQJSGlFKUaBVLpGgWR0DTfxsg5imVdX2UKGgGaAloD0MIvLN220WScECUhpRSlGgVS7RoFkdA038dQ66renV9lChoBmgJaA9DCOuOxTYpFHNAlIaUUpRoFUuoaBZHQNN/H2etjkN1fZQoaAZoCWgPQwiS66aUF6RzQJSGlFKUaBVLqGgWR0DTfyfcgyM2dX2UKGgGaAloD0MIio9PyA7qcUCUhpRSlGgVS4poFkdA038n3j+72HV9lChoBmgJaA9DCCpxHeOK+HJAlIaUUpRoFUusaBZHQNN/KapgkTp1fZQoaAZoCWgPQwjIX1rUpzNzQJSGlFKUaBVLsGgWR0DTfyvuXu3MdX2UKGgGaAloD0MI5C8t6tMncECUhpRSlGgVS4xoFkdA038tIF/x2HV9lChoBmgJaA9DCOKuXkXGA3FAlIaUUpRoFUuGaBZHQNN/LtjslcB1fZQoaAZoCWgPQwhqwvaT8fJzQJSGlFKUaBVLuWgWR0DTfy+FN+LFdX2UKGgGaAloD0MIbJbLRudacECUhpRSlGgVS4poFkdA038vwUxmCnV9lChoBmgJaA9DCFOT4A1pHG9AlIaUUpRoFUuXaBZHQNN/M0+X7ch1fZQoaAZoCWgPQwgTfqmf9whzQJSGlFKUaBVLuWgWR0DTfzOj4593dX2UKGgGaAloD0MInWNA9jokc0CUhpRSlGgVS6poFkdA03824Z/CqXV9lChoBmgJaA9DCOKTTiQYP3JAlIaUUpRoFUuvaBZHQNN/N/xMFll1fZQoaAZoCWgPQwjc2VceJLlyQJSGlFKUaBVLhWgWR0DTfzjvQWvbdX2UKGgGaAloD0MIfEPhszUecUCUhpRSlGgVS51oFkdA0385bvPTonV9lChoBmgJaA9DCBdnDHMCDnJAlIaUUpRoFUuraBZHQNN/PgjIJZ51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12208, "n_steps": 1024, "gamma": 0.992, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9hdXRvd2luL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxVL2hvbWUvYXV0b3dpbi9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-40-generic-x86_64-with-glibc2.35 #43-Ubuntu SMP Wed Jun 15 12:54:21 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.12.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2a162b85d72124683f72286237c361441204e348c26f768f6cffdbe33b9989c
|
3 |
+
size 147051
|
ppo-LunarLander-v2/data
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -35,49 +35,49 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
@@ -86,7 +86,7 @@
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2005530700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2005530790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2005530820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f20055308b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2005530940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f20055309d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2005530a60>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2005530af0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2005530b80>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2005530c10>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2005530ca0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2005532480>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 50003968,
|
46 |
+
"_total_timesteps": 50000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1657583711.3025563,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9hdXRvd2luL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxVL2hvbWUvYXV0b3dpbi9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrYPD6oJuc+AGxevuY4Pb9d1J8+ELWivgAAAAAAAAAAzQQ4PD07ezy5GRi+JJfYva+47r3KBVo/AACAPwAAAABNUZa+4n2OP0shnr7t/yO/1B4Rv7b5iL4AAAAAAAAAAJqOSz2uZ/e4PQlKM1c76S5lvAa8MCjSswAAgD8AAIA/2ov+vdgfjz9s2IO+tjFYv/8FXr5pq5i+AAAAAAAAAADjJYc+2AHFPlUt/L7Bbjm/5SzIPZ4iv74AAAAAAAAAALpwIj7p+lK8KjVqOwpI1Lm9xbe9OEa2ugAAgD8AAIA/QO6JPojSjj8SNpw+/l4Zv2FAIz8d304+AAAAAAAAAADz0ZW9A8kIvB0pXT16Nhw9hl0ZvQjiDb0AAIA/AACAP2bCoDx2V0S85x8Fvjv8HzyLRmS8wx5/PAAAgD8AAIA/mq0DPXaIUrxIl/O9Q9//vHWjd73I03m9AACAPwAAgD9mUBG9aQytP7LceL67Dbm+EN6PvE+REL4AAAAAAAAAAM1X5D1bRLY9ChubvvYrCb9wGbm9inCOvgAAAAAAAAAAJqGBvUj/1brWqtg9ew/PPEP/DLy2C7E9AACAPwAAgD9mQvA8Mt2LP6bsnj1p5F2/rYJdPe7QrDwAAAAAAAAAAFpDNr5lowY/QHyFPQMyRL/KvqO+mDxwPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -7.935999999997279e-05,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFNBE2DBrc0CUhpRSlIwBbJRLuYwBdJRHQNN+iAHAymB1fZQoaAZoCWgPQwhqiZXRiC9yQJSGlFKUaBVLe2gWR0DTfog8zQ/pdX2UKGgGaAloD0MIRPgXQeM1cECUhpRSlGgVS45oFkdA036KZBcAznV9lChoBmgJaA9DCEpATMKF1EBAlIaUUpRoFUt1aBZHQNN+i2LP2PF1fZQoaAZoCWgPQwh6jsh3KUxvQJSGlFKUaBVLlGgWR0DTfo2N4qwydX2UKGgGaAloD0MIO2743XTlb0CUhpRSlGgVS4RoFkdA036PxbB42XV9lChoBmgJaA9DCH506srnDHNAlIaUUpRoFUusaBZHQNN+kAbEP2B1fZQoaAZoCWgPQwidhT3t8GByQJSGlFKUaBVLqmgWR0DTfpFpSJj2dX2UKGgGaAloD0MIR4/f2zRUcUCUhpRSlGgVS6BoFkdA036S1jAi3XV9lChoBmgJaA9DCGed8X2xinNAlIaUUpRoFUunaBZHQNN+k7UPQOZ1fZQoaAZoCWgPQwjPvvIgPa1yQJSGlFKUaBVLimgWR0DTfpaR9w3pdX2UKGgGaAloD0MI0c5pFmjEckCUhpRSlGgVS5loFkdA036WuuA7P3V9lChoBmgJaA9DCE5fz9esMnFAlIaUUpRoFUugaBZHQNN+lxmoR7J1fZQoaAZoCWgPQwgrbtxiflVzQJSGlFKUaBVLkGgWR0DTfpxZW7vodX2UKGgGaAloD0MIYCFzZZC4ckCUhpRSlGgVS5loFkdA036fxwyZa3V9lChoBmgJaA9DCLEyGvm8gXBAlIaUUpRoFUuKaBZHQNN+oBQm/nJ1fZQoaAZoCWgPQwgW+IpuPbtyQJSGlFKUaBVLqWgWR0DTfqITDfm+dX2UKGgGaAloD0MI0PHR4gyrcECUhpRSlGgVS4poFkdA036jcENe+nV9lChoBmgJaA9DCOJ2aFhMnXJAlIaUUpRoFUusaBZHQNN+pmBvrGB1fZQoaAZoCWgPQwhHq1rS0c9yQJSGlFKUaBVLkmgWR0DTfqci/wiJdX2UKGgGaAloD0MInuqQm+HyckCUhpRSlGgVS4ZoFkdA036qfLLZBnV9lChoBmgJaA9DCAclzLS9PXNAlIaUUpRoFUuaaBZHQNN+qujRD1J1fZQoaAZoCWgPQwgJih9j7oBzQJSGlFKUaBVLn2gWR0DTfqwIsyzpdX2UKGgGaAloD0MIyR6hZsjGc0CUhpRSlGgVS8RoFkdA036s7DVH4HV9lChoBmgJaA9DCMri/iOTVnFAlIaUUpRoFUuZaBZHQNN+rqKtPpJ1fZQoaAZoCWgPQwjxuKgWUVBzQJSGlFKUaBVLrGgWR0DTfq+VZ9uxdX2UKGgGaAloD0MIc9U8R2SRcECUhpRSlGgVS5NoFkdA036wVz6rNnV9lChoBmgJaA9DCJSFr6+14HBAlIaUUpRoFUucaBZHQNN+skQoTf11fZQoaAZoCWgPQwg4SIjyBVJyQJSGlFKUaBVLqWgWR0DTfrQQvpQldX2UKGgGaAloD0MIlltaDYn4ckCUhpRSlGgVS5BoFkdA0365JGe+VXV9lChoBmgJaA9DCOj6PhxkoXJAlIaUUpRoFUunaBZHQNN+uemFajh1fZQoaAZoCWgPQwg0hGOWPeBxQJSGlFKUaBVLgWgWR0DTfrotbs4UdX2UKGgGaAloD0MIU5YhjrX9cUCUhpRSlGgVS39oFkdA0369dKNADHV9lChoBmgJaA9DCGaiCKkbqXNAlIaUUpRoFUuoaBZHQNN+vdN8E3d1fZQoaAZoCWgPQwjYYUz6OyN0QJSGlFKUaBVLrGgWR0DTfsCJZW7wdX2UKGgGaAloD0MITWcng+NJcUCUhpRSlGgVS4NoFkdA037EDUmUn3V9lChoBmgJaA9DCKiKqfTTbXNAlIaUUpRoFUuhaBZHQNN+x4EW69V1fZQoaAZoCWgPQwi7YduiTMVxQJSGlFKUaBVLn2gWR0DTfshP8AJcdX2UKGgGaAloD0MIw7zHmSaJcUCUhpRSlGgVS5FoFkdA037IoN/e+HV9lChoBmgJaA9DCGK+vAA773JAlIaUUpRoFUuuaBZHQNN+yYx+KCR1fZQoaAZoCWgPQwjRPIBFPoNwQJSGlFKUaBVLmGgWR0DTfsrgAIY4dX2UKGgGaAloD0MIkjtsIvM9ckCUhpRSlGgVS51oFkdA037OyuIRAnV9lChoBmgJaA9DCM2wUdZvbXNAlIaUUpRoFUuTaBZHQNN+zvg3tKJ1fZQoaAZoCWgPQwi610l92QtzQJSGlFKUaBVLumgWR0DTftHitJWedX2UKGgGaAloD0MI+Um1T4c+cECUhpRSlGgVS5FoFkdA037ThaTwD3V9lChoBmgJaA9DCHpuoSuRtHBAlIaUUpRoFUuNaBZHQNN+08tPHkt1fZQoaAZoCWgPQwhvfy4a8thxQJSGlFKUaBVLomgWR0DTftcoG6f8dX2UKGgGaAloD0MIntMs0K6BcUCUhpRSlGgVS5doFkdA037YsGPgenV9lChoBmgJaA9DCAfOGVEajHNAlIaUUpRoFUucaBZHQNN+2eZ5Rj11fZQoaAZoCWgPQwgJ4dHGkXZwQJSGlFKUaBVLf2gWR0DTftrM/yG0dX2UKGgGaAloD0MIyQBQxY19ckCUhpRSlGgVS6JoFkdA037dfCQ9zXV9lChoBmgJaA9DCDZy3ZSyM3JAlIaUUpRoFUuFaBZHQNN+38zVMEl1fZQoaAZoCWgPQwiqRxrc1h5wQJSGlFKUaBVLj2gWR0DTfuDNbC79dX2UKGgGaAloD0MILgQ5KKEsckCUhpRSlGgVS41oFkdA037hfYjB23V9lChoBmgJaA9DCEvoLonzbHJAlIaUUpRoFUuTaBZHQNN+42oJiRZ1fZQoaAZoCWgPQwhmu0IfLC1xQJSGlFKUaBVLnWgWR0DTfuZoUSIydX2UKGgGaAloD0MIrG9gciPzbkCUhpRSlGgVS4VoFkdA037rKiwjdHV9lChoBmgJaA9DCOjdWFCYEXNAlIaUUpRoFUujaBZHQNN+68kQf6p1fZQoaAZoCWgPQwixh/axgjdxQJSGlFKUaBVLqWgWR0DTfuzP/rB1dX2UKGgGaAloD0MIcOzZcxkZcUCUhpRSlGgVS5loFkdA037tCBwuNHV9lChoBmgJaA9DCLafjPEhsXBAlIaUUpRoFUuGaBZHQNN+7yVObiJ1fZQoaAZoCWgPQwhTXiuhe35yQJSGlFKUaBVLq2gWR0DTfvIYj0L/dX2UKGgGaAloD0MIABx79lygcECUhpRSlGgVS5doFkdA0371PTodMnV9lChoBmgJaA9DCA1v1uB9KXJAlIaUUpRoFUuraBZHQNN+97xRVIZ1fZQoaAZoCWgPQwiKd4AnrSpyQJSGlFKUaBVLo2gWR0DTfvigOBlMdX2UKGgGaAloD0MIck2BzI7jcUCUhpRSlGgVS4JoFkdA0375xYq5LHV9lChoBmgJaA9DCGe5bHSO13BAlIaUUpRoFUuJaBZHQNN++mRigCh1fZQoaAZoCWgPQwi1a0Jao+lxQJSGlFKUaBVLf2gWR0DTfvtJmNBGdX2UKGgGaAloD0MIYAK37magc0CUhpRSlGgVS6loFkdA0378y9mHxnV9lChoBmgJaA9DCKg4DrxaInJAlIaUUpRoFUumaBZHQNN+/pZGKAJ1fZQoaAZoCWgPQwhck25LZCFzQJSGlFKUaBVLqmgWR0DTfwbU7Sy/dX2UKGgGaAloD0MId50N+efpcECUhpRSlGgVS41oFkdA038H35N47nV9lChoBmgJaA9DCAFr1a5JcnNAlIaUUpRoFUuaaBZHQNN/CY3FUAF1fZQoaAZoCWgPQwhAaD18GWhzQJSGlFKUaBVLp2gWR0DTfwufBeoldX2UKGgGaAloD0MIda29T9Xuc0CUhpRSlGgVS6VoFkdA038NHNHH3nV9lChoBmgJaA9DCEoH6/+cBXJAlIaUUpRoFUupaBZHQNN/EDMaCMB1fZQoaAZoCWgPQwgCnUmbKu1vQJSGlFKUaBVLhWgWR0DTfxIgNgBtdX2UKGgGaAloD0MIcNBefbw9c0CUhpRSlGgVS7JoFkdA038VEm6XjXV9lChoBmgJaA9DCMV29wCdgnNAlIaUUpRoFUuiaBZHQNN/FT7hvR91fZQoaAZoCWgPQwj5S4v6ZC50QJSGlFKUaBVLmGgWR0DTfxadXko4dX2UKGgGaAloD0MI9NxCV+LRcUCUhpRSlGgVS5JoFkdA038Wiw0O3HV9lChoBmgJaA9DCPVoqidzYnJAlIaUUpRoFUuDaBZHQNN/FtKIznB1fZQoaAZoCWgPQwiqtwa2CmVxQJSGlFKUaBVLpGgWR0DTfxsg5imVdX2UKGgGaAloD0MIvLN220WScECUhpRSlGgVS7RoFkdA038dQ66renV9lChoBmgJaA9DCOuOxTYpFHNAlIaUUpRoFUuoaBZHQNN/H2etjkN1fZQoaAZoCWgPQwiS66aUF6RzQJSGlFKUaBVLqGgWR0DTfyfcgyM2dX2UKGgGaAloD0MIio9PyA7qcUCUhpRSlGgVS4poFkdA038n3j+72HV9lChoBmgJaA9DCCpxHeOK+HJAlIaUUpRoFUusaBZHQNN/KapgkTp1fZQoaAZoCWgPQwjIX1rUpzNzQJSGlFKUaBVLsGgWR0DTfyvuXu3MdX2UKGgGaAloD0MI5C8t6tMncECUhpRSlGgVS4xoFkdA038tIF/x2HV9lChoBmgJaA9DCOKuXkXGA3FAlIaUUpRoFUuGaBZHQNN/LtjslcB1fZQoaAZoCWgPQwhqwvaT8fJzQJSGlFKUaBVLuWgWR0DTfy+FN+LFdX2UKGgGaAloD0MIbJbLRudacECUhpRSlGgVS4poFkdA038vwUxmCnV9lChoBmgJaA9DCFOT4A1pHG9AlIaUUpRoFUuXaBZHQNN/M0+X7ch1fZQoaAZoCWgPQwgTfqmf9whzQJSGlFKUaBVLuWgWR0DTfzOj4593dX2UKGgGaAloD0MInWNA9jokc0CUhpRSlGgVS6poFkdA03824Z/CqXV9lChoBmgJaA9DCOKTTiQYP3JAlIaUUpRoFUuvaBZHQNN/N/xMFll1fZQoaAZoCWgPQwjc2VceJLlyQJSGlFKUaBVLhWgWR0DTfzjvQWvbdX2UKGgGaAloD0MIfEPhszUecUCUhpRSlGgVS51oFkdA0385bvPTonV9lChoBmgJaA9DCBdnDHMCDnJAlIaUUpRoFUuraBZHQNN/PgjIJZ51ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 12208,
|
79 |
"n_steps": 1024,
|
80 |
+
"gamma": 0.992,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9hdXRvd2luL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxVL2hvbWUvYXV0b3dpbi9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95a12024a1c6be336db9a4e911070664d8355c8be36b56596e5a5c955b33a2c4
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1204bc198d6a8bfc3a420246e810c0fa17cadc19ca0682e216a86e18e685ef4
|
3 |
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.
|
2 |
-
Python: 3.
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
-
PyTorch: 1.
|
5 |
GPU Enabled: True
|
6 |
-
Numpy: 1.21.
|
7 |
Gym: 0.21.0
|
|
|
1 |
+
OS: Linux-5.15.0-40-generic-x86_64-with-glibc2.35 #43-Ubuntu SMP Wed Jun 15 12:54:21 UTC 2022
|
2 |
+
Python: 3.9.12
|
3 |
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.12.0+cu102
|
5 |
GPU Enabled: True
|
6 |
+
Numpy: 1.21.5
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7ca7fb3f10b455bd7bd7287fd10ae52942e39151b881336e97cc5b706f80cb2
|
3 |
+
size 208516
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 296.3126624274713, "std_reward": 13.369214323308904, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-12T06:28:01.930604"}
|