AntiSquid commited on
Commit
e2aa288
1 Parent(s): 1ef41d3

first commit

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d46ab4e9a3c5f307f0903ed0d62a26a6279bda3376c22de984c2838effd79e90
3
+ size 147424
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff656e83670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff656e83700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff656e83790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff656e83820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff656e838b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff656e83940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff656e839d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff656e83a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff656e83af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff656e83b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff656e83c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff656e83ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff656e81240>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676160911497402529,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0oEz5ySw4+e7EHPEnuPb5obfo8AV7KvAAAAAAAAAAApjK2vXuir7rbMny1FWJ/sM/zcjki5bU0AAAAAAAAgD/Nrye+inqIPy+nvb7BAvO+0dZSvjDDbrsAAAAAAAAAAH2Fz76DgGk/jXV0vjZ6+b4HuJS+ejj6PQAAAAAAAAAA2kTgveShCj62W8o9JXFKvkzKmLyD6Vs6AAAAAAAAAADNwDe8unwQPgX1Vz1VjVO+qlnsOqTfqToAAAAAAAAAAE1p1z1IsY26vI+NuVqUsLPUlhq73cSiOAAAAAAAAIA/zdcqPaMHoT/iwuY907yDvvS/rD1d+lQ9AAAAAAAAAACGoRw+6my+PiIf873FhG++r4snva2m1b0AAAAAAAAAAApYr77VDkY+sikePpFAAb5AlBW9IWhAPQAAAAAAAAAATQ5yPeG64bqgugS8tehPPYW5X7x6Hi0+AACAPwAAgD9m+x89NgRAPVyDorzZPz++DRPUu43zhz0AAAAAAAAAAIYsQT5caly8GiA4u3UCSjmFgc+9bbFlOgAAgD8AAIA/ZnqKvMMdJLqiECqzvT/qrru3NrtkNsUzAACAPwAAgD8z4a08kLi2PvHiur1bzYa+OM6UvWic0r0AAAAAAAAAAOZ5BL4XydM+E/lpPe/dMr7cI7G8Mao5uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhEnx8YnMYUCUhpRSlIwBbJRN6AOMAXSUR0CTwEIBRyfddX2UKGgGaAloD0MI4xbzc8PCcECUhpRSlGgVTQMCaBZHQJPA4G6f8Mx1fZQoaAZoCWgPQwj12mysRDNwQJSGlFKUaBVNlAFoFkdAk8Gh4+r2g3V9lChoBmgJaA9DCGO1+X8V3nBAlIaUUpRoFU3wAWgWR0CTyXtmcvugdX2UKGgGaAloD0MIKEnXTH4ocUCUhpRSlGgVTWYBaBZHQJPKQPpY9xJ1fZQoaAZoCWgPQwhaEqCmlhheQJSGlFKUaBVN6ANoFkdAk8pnPzFuN3V9lChoBmgJaA9DCL6lnC92wG9AlIaUUpRoFU1uAmgWR0CTzGTWoWHldX2UKGgGaAloD0MIZvfkYaF5bUCUhpRSlGgVTS4BaBZHQJPPU1rIo3J1fZQoaAZoCWgPQwj2JLA5h11kQJSGlFKUaBVN6ANoFkdAk9Fsqaw2VHV9lChoBmgJaA9DCLpOIy2VxW1AlIaUUpRoFU15AWgWR0CT0eBun/DMdX2UKGgGaAloD0MI5uWw+44ubkCUhpRSlGgVTYcBaBZHQJPSoSsbNr11fZQoaAZoCWgPQwhrR3GOuvVhQJSGlFKUaBVN6ANoFkdAk9QgSJ0nxHV9lChoBmgJaA9DCBsRjINLRGtAlIaUUpRoFU1ZAWgWR0CT1Fj8UEgXdX2UKGgGaAloD0MI86rOasEBcUCUhpRSlGgVTZ8CaBZHQJPWm8zyjHp1fZQoaAZoCWgPQwgx0LUvYIpxQJSGlFKUaBVNwAFoFkdAk9fsiSq2jXV9lChoBmgJaA9DCCJTPgRV0zVAlIaUUpRoFUvqaBZHQJPaGSJTER91fZQoaAZoCWgPQwiM2v0qQARhQJSGlFKUaBVN6ANoFkdAk90gGGEf1nV9lChoBmgJaA9DCHr7c9EQbG1AlIaUUpRoFU0/AmgWR0CT3miG34KydX2UKGgGaAloD0MIj/0sliJRcUCUhpRSlGgVTfIBaBZHQJPiy5e7cwh1fZQoaAZoCWgPQwihZ7Pq80JyQJSGlFKUaBVNTgFoFkdAk+Lp66asqHV9lChoBmgJaA9DCBE0ZhL1721AlIaUUpRoFU1qAWgWR0CT4ygl4TsZdX2UKGgGaAloD0MIRN5y9eM+bECUhpRSlGgVTYgBaBZHQJPlHQ5WBBl1fZQoaAZoCWgPQwh1P6cgPytuQJSGlFKUaBVNcgNoFkdAlAE2LLpzLnV9lChoBmgJaA9DCHQNMzQelWVAlIaUUpRoFU3oA2gWR0CUAYbayrxRdX2UKGgGaAloD0MIqgt4mWE/cECUhpRSlGgVTYUCaBZHQJQCAatLcsV1fZQoaAZoCWgPQwhY42w6Av9wQJSGlFKUaBVNdwJoFkdAlAIUAxSHd3V9lChoBmgJaA9DCN4AM9/B/m5AlIaUUpRoFU20AWgWR0CUAqVhTfixdX2UKGgGaAloD0MIdVjhlo9kbkCUhpRSlGgVTV8CaBZHQJQC/a9K28Z1fZQoaAZoCWgPQwh1yqMbYUVvQJSGlFKUaBVN0QFoFkdAlAN8rmQr+nV9lChoBmgJaA9DCG8rvTZb+nBAlIaUUpRoFU2lAWgWR0CUBOzSThYOdX2UKGgGaAloD0MI+b1Nf/aDMECUhpRSlGgVS9hoFkdAlAVAVj7Q9nV9lChoBmgJaA9DCK6f/rNmCW1AlIaUUpRoFU2DAWgWR0CUB6lLeyiVdX2UKGgGaAloD0MI1bDfE6s6cECUhpRSlGgVTUoBaBZHQJQJX1zySV51fZQoaAZoCWgPQwg2yCQj5+FvQJSGlFKUaBVNSwFoFkdAlAmmd/axo3V9lChoBmgJaA9DCFTGv8+4AXJAlIaUUpRoFU2uAWgWR0CUCjhVU+9rdX2UKGgGaAloD0MIUiegifA4cECUhpRSlGgVTSEBaBZHQJQOt4qwyIp1fZQoaAZoCWgPQwhW9IdmHt5uQJSGlFKUaBVNugFoFkdAlBBmWldka3V9lChoBmgJaA9DCK65o/8lXHFAlIaUUpRoFU1nAWgWR0CUEIB9Tgl4dX2UKGgGaAloD0MIRuuoagK0bkCUhpRSlGgVTZ0BaBZHQJQTV74SHuZ1fZQoaAZoCWgPQwh5A8x8B+FuQJSGlFKUaBVNVAFoFkdAlBOZhWo3rHV9lChoBmgJaA9DCDpdFhMb1GxAlIaUUpRoFU2SAWgWR0CUE8+fywwCdX2UKGgGaAloD0MIGsOcoM0ebECUhpRSlGgVTVMBaBZHQJQUEAeaKDV1fZQoaAZoCWgPQwh8Zd6qawduQJSGlFKUaBVNsAFoFkdAlBTB3NcGDHV9lChoBmgJaA9DCPeRW5Nue3BAlIaUUpRoFU0dAWgWR0CUFpFkhA4XdX2UKGgGaAloD0MIW18ktOVQcUCUhpRSlGgVTRwCaBZHQJQYfsXzlLh1fZQoaAZoCWgPQwgrbAa4IOtwQJSGlFKUaBVNRwFoFkdAlBjEipvP1XV9lChoBmgJaA9DCFK3s6+8rGtAlIaUUpRoFU3oA2gWR0CUHNoJzDGcdX2UKGgGaAloD0MIWHIVi18xcUCUhpRSlGgVTfABaBZHQJQd90W/JvJ1fZQoaAZoCWgPQwgu5ueGJgluQJSGlFKUaBVNYQFoFkdAlB9ObmU4aXV9lChoBmgJaA9DCLggW5Yvqm1AlIaUUpRoFU3RAWgWR0CUH9zLOiWWdX2UKGgGaAloD0MI6gQ0ETb7X0CUhpRSlGgVTegDaBZHQJQgu8ujASF1fZQoaAZoCWgPQwhWKT3TSy5sQJSGlFKUaBVNIgFoFkdAlCErpeNT+HV9lChoBmgJaA9DCHPxtz3BaG5AlIaUUpRoFU0oAWgWR0CUITdZJTVEdX2UKGgGaAloD0MI/u2yX/eBb0CUhpRSlGgVTYgBaBZHQJQibb+Lm6p1fZQoaAZoCWgPQwgjhEcbx41xQJSGlFKUaBVNHwFoFkdAlCWxdyDIzXV9lChoBmgJaA9DCLdB7bf21W9AlIaUUpRoFU2gAWgWR0CUJhDdP+GXdX2UKGgGaAloD0MIC/Dd5o1kbkCUhpRSlGgVTUwDaBZHQJQmXF5v9+B1fZQoaAZoCWgPQwg2yvrNhGVwQJSGlFKUaBVNTgFoFkdAlCds8cMmW3V9lChoBmgJaA9DCEZDxqNUfXBAlIaUUpRoFU2DAWgWR0CUJ9Djin50dX2UKGgGaAloD0MIDd5X5UK1bkCUhpRSlGgVTc0BaBZHQJQoFaNdZ7p1fZQoaAZoCWgPQwhL6C6Js4pvQJSGlFKUaBVNDgJoFkdAlCwbeMyaeHV9lChoBmgJaA9DCI8ZqIx/BnFAlIaUUpRoFU1FAWgWR0CURm0L+glGdX2UKGgGaAloD0MIyLQ2jW2wa0CUhpRSlGgVTW0BaBZHQJRGkQ4CIUJ1fZQoaAZoCWgPQwiSsG8nka9wQJSGlFKUaBVNmQFoFkdAlEeEfDDTB3V9lChoBmgJaA9DCAYsuYrFymxAlIaUUpRoFU1WAWgWR0CUSIL+PzWgdX2UKGgGaAloD0MIlnuBWeEKcECUhpRSlGgVTZUBaBZHQJRJdAt4A0d1fZQoaAZoCWgPQwgdrtUednlyQJSGlFKUaBVNbQFoFkdAlEl0JSiudXV9lChoBmgJaA9DCA+Yh0x5vWxAlIaUUpRoFU2SAWgWR0CUTEfl6qsEdX2UKGgGaAloD0MICB7f3jW7bUCUhpRSlGgVTb4BaBZHQJRMZ24d6s11fZQoaAZoCWgPQwg7pu7KrrlsQJSGlFKUaBVNaAFoFkdAlE4GAPNFB3V9lChoBmgJaA9DCGRXWkbq/29AlIaUUpRoFU15AWgWR0CUThvicXnAdX2UKGgGaAloD0MIut3LffJ2cECUhpRSlGgVTYIBaBZHQJRQk1TBInV1fZQoaAZoCWgPQwgX00z3usNvQJSGlFKUaBVNsgFoFkdAlFJHJHRTj3V9lChoBmgJaA9DCGl0B7HzZnBAlIaUUpRoFU07AWgWR0CUU997WuoxdX2UKGgGaAloD0MIh9uhYTHVbkCUhpRSlGgVTXYBaBZHQJRUbs4T9Kp1fZQoaAZoCWgPQwjIQQkzbZ9fQJSGlFKUaBVN6ANoFkdAlFURVyWAw3V9lChoBmgJaA9DCG6jAbzFDnFAlIaUUpRoFU1XAWgWR0CUVv0kGA09dX2UKGgGaAloD0MIt+7mqU6ccECUhpRSlGgVTUgBaBZHQJRXSSU1Q691fZQoaAZoCWgPQwj/d0SFqnhyQJSGlFKUaBVNUAFoFkdAlFeabrkbP3V9lChoBmgJaA9DCD1gHjIlCXFAlIaUUpRoFU0dAmgWR0CUV63zcynDdX2UKGgGaAloD0MIk4/dBQoocECUhpRSlGgVTVkBaBZHQJRaxE+gUUR1fZQoaAZoCWgPQwhg6udNRSZwQJSGlFKUaBVNXgFoFkdAlFsjK9wm3XV9lChoBmgJaA9DCAd96e3PcXJAlIaUUpRoFU1MAWgWR0CUXCc2itaIdX2UKGgGaAloD0MIhQfNrntNb0CUhpRSlGgVTcwBaBZHQJRidRJmNBF1fZQoaAZoCWgPQwhHdTqQNVBwQJSGlFKUaBVNkwFoFkdAlGKcZ9/jKnV9lChoBmgJaA9DCBQH0O/7PW9AlIaUUpRoFU1vAWgWR0CUYrM9bHIZdX2UKGgGaAloD0MI5zi3Cff6cUCUhpRSlGgVTUYBaBZHQJRjn0xubZx1fZQoaAZoCWgPQwhJY7SOqrtwQJSGlFKUaBVNZgFoFkdAlGPXGsFMZnV9lChoBmgJaA9DCN1bkZigNm5AlIaUUpRoFU1JAWgWR0CUZz1jy4FzdX2UKGgGaAloD0MIKa+V0F2YbUCUhpRSlGgVTZcBaBZHQJRnUkhRqGl1fZQoaAZoCWgPQwgOL4hIzd1wQJSGlFKUaBVNcwFoFkdAlGnC31BdEHV9lChoBmgJaA9DCAnDgCVXWm9AlIaUUpRoFU0WA2gWR0CUaqBhhH9WdX2UKGgGaAloD0MI4ICWruAFb0CUhpRSlGgVTT0BaBZHQJRrv1lGwzN1fZQoaAZoCWgPQwgsLLgf8MxiQJSGlFKUaBVN6ANoFkdAlGxEJjUd73V9lChoBmgJaA9DCCnOUUfHZm1AlIaUUpRoFU2yAWgWR0CUbLTxXnyNdX2UKGgGaAloD0MIKsb5m9AEbkCUhpRSlGgVTVoBaBZHQJRs5kGzKLd1fZQoaAZoCWgPQwhpigCn9/xuQJSGlFKUaBVNrwFoFkdAlGznctXgcnV9lChoBmgJaA9DCCXmWUkrrihAlIaUUpRoFU0dAWgWR0CUclk6cRUWdX2UKGgGaAloD0MIr1sExvq+bUCUhpRSlGgVTTABaBZHQJR0vsXzlLh1fZQoaAZoCWgPQwgJ+gs94tVuQJSGlFKUaBVNTgFoFkdAlHUu98JD3XVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaad09d854b08fe64cdf9331f7a730fc803c8138fff80f7bf47fd285298f6062
3
+ size 87929
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:888a9adf6327777100404e7fb1dbf98a204f0d90f5d5eea2b6f671890d42a84f
3
+ size 43393
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 202.00 +/- 64.68
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff656e83670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff656e83700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff656e83790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff656e83820>", "_build": "<function ActorCriticPolicy._build at 0x7ff656e838b0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff656e83940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff656e839d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff656e83a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff656e83af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff656e83b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff656e83c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff656e83ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff656e81240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676160911497402529, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0oEz5ySw4+e7EHPEnuPb5obfo8AV7KvAAAAAAAAAAApjK2vXuir7rbMny1FWJ/sM/zcjki5bU0AAAAAAAAgD/Nrye+inqIPy+nvb7BAvO+0dZSvjDDbrsAAAAAAAAAAH2Fz76DgGk/jXV0vjZ6+b4HuJS+ejj6PQAAAAAAAAAA2kTgveShCj62W8o9JXFKvkzKmLyD6Vs6AAAAAAAAAADNwDe8unwQPgX1Vz1VjVO+qlnsOqTfqToAAAAAAAAAAE1p1z1IsY26vI+NuVqUsLPUlhq73cSiOAAAAAAAAIA/zdcqPaMHoT/iwuY907yDvvS/rD1d+lQ9AAAAAAAAAACGoRw+6my+PiIf873FhG++r4snva2m1b0AAAAAAAAAAApYr77VDkY+sikePpFAAb5AlBW9IWhAPQAAAAAAAAAATQ5yPeG64bqgugS8tehPPYW5X7x6Hi0+AACAPwAAgD9m+x89NgRAPVyDorzZPz++DRPUu43zhz0AAAAAAAAAAIYsQT5caly8GiA4u3UCSjmFgc+9bbFlOgAAgD8AAIA/ZnqKvMMdJLqiECqzvT/qrru3NrtkNsUzAACAPwAAgD8z4a08kLi2PvHiur1bzYa+OM6UvWic0r0AAAAAAAAAAOZ5BL4XydM+E/lpPe/dMr7cI7G8Mao5uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhEnx8YnMYUCUhpRSlIwBbJRN6AOMAXSUR0CTwEIBRyfddX2UKGgGaAloD0MI4xbzc8PCcECUhpRSlGgVTQMCaBZHQJPA4G6f8Mx1fZQoaAZoCWgPQwj12mysRDNwQJSGlFKUaBVNlAFoFkdAk8Gh4+r2g3V9lChoBmgJaA9DCGO1+X8V3nBAlIaUUpRoFU3wAWgWR0CTyXtmcvugdX2UKGgGaAloD0MIKEnXTH4ocUCUhpRSlGgVTWYBaBZHQJPKQPpY9xJ1fZQoaAZoCWgPQwhaEqCmlhheQJSGlFKUaBVN6ANoFkdAk8pnPzFuN3V9lChoBmgJaA9DCL6lnC92wG9AlIaUUpRoFU1uAmgWR0CTzGTWoWHldX2UKGgGaAloD0MIZvfkYaF5bUCUhpRSlGgVTS4BaBZHQJPPU1rIo3J1fZQoaAZoCWgPQwj2JLA5h11kQJSGlFKUaBVN6ANoFkdAk9Fsqaw2VHV9lChoBmgJaA9DCLpOIy2VxW1AlIaUUpRoFU15AWgWR0CT0eBun/DMdX2UKGgGaAloD0MI5uWw+44ubkCUhpRSlGgVTYcBaBZHQJPSoSsbNr11fZQoaAZoCWgPQwhrR3GOuvVhQJSGlFKUaBVN6ANoFkdAk9QgSJ0nxHV9lChoBmgJaA9DCBsRjINLRGtAlIaUUpRoFU1ZAWgWR0CT1Fj8UEgXdX2UKGgGaAloD0MI86rOasEBcUCUhpRSlGgVTZ8CaBZHQJPWm8zyjHp1fZQoaAZoCWgPQwgx0LUvYIpxQJSGlFKUaBVNwAFoFkdAk9fsiSq2jXV9lChoBmgJaA9DCCJTPgRV0zVAlIaUUpRoFUvqaBZHQJPaGSJTER91fZQoaAZoCWgPQwiM2v0qQARhQJSGlFKUaBVN6ANoFkdAk90gGGEf1nV9lChoBmgJaA9DCHr7c9EQbG1AlIaUUpRoFU0/AmgWR0CT3miG34KydX2UKGgGaAloD0MIj/0sliJRcUCUhpRSlGgVTfIBaBZHQJPiy5e7cwh1fZQoaAZoCWgPQwihZ7Pq80JyQJSGlFKUaBVNTgFoFkdAk+Lp66asqHV9lChoBmgJaA9DCBE0ZhL1721AlIaUUpRoFU1qAWgWR0CT4ygl4TsZdX2UKGgGaAloD0MIRN5y9eM+bECUhpRSlGgVTYgBaBZHQJPlHQ5WBBl1fZQoaAZoCWgPQwh1P6cgPytuQJSGlFKUaBVNcgNoFkdAlAE2LLpzLnV9lChoBmgJaA9DCHQNMzQelWVAlIaUUpRoFU3oA2gWR0CUAYbayrxRdX2UKGgGaAloD0MIqgt4mWE/cECUhpRSlGgVTYUCaBZHQJQCAatLcsV1fZQoaAZoCWgPQwhY42w6Av9wQJSGlFKUaBVNdwJoFkdAlAIUAxSHd3V9lChoBmgJaA9DCN4AM9/B/m5AlIaUUpRoFU20AWgWR0CUAqVhTfixdX2UKGgGaAloD0MIdVjhlo9kbkCUhpRSlGgVTV8CaBZHQJQC/a9K28Z1fZQoaAZoCWgPQwh1yqMbYUVvQJSGlFKUaBVN0QFoFkdAlAN8rmQr+nV9lChoBmgJaA9DCG8rvTZb+nBAlIaUUpRoFU2lAWgWR0CUBOzSThYOdX2UKGgGaAloD0MI+b1Nf/aDMECUhpRSlGgVS9hoFkdAlAVAVj7Q9nV9lChoBmgJaA9DCK6f/rNmCW1AlIaUUpRoFU2DAWgWR0CUB6lLeyiVdX2UKGgGaAloD0MI1bDfE6s6cECUhpRSlGgVTUoBaBZHQJQJX1zySV51fZQoaAZoCWgPQwg2yCQj5+FvQJSGlFKUaBVNSwFoFkdAlAmmd/axo3V9lChoBmgJaA9DCFTGv8+4AXJAlIaUUpRoFU2uAWgWR0CUCjhVU+9rdX2UKGgGaAloD0MIUiegifA4cECUhpRSlGgVTSEBaBZHQJQOt4qwyIp1fZQoaAZoCWgPQwhW9IdmHt5uQJSGlFKUaBVNugFoFkdAlBBmWldka3V9lChoBmgJaA9DCK65o/8lXHFAlIaUUpRoFU1nAWgWR0CUEIB9Tgl4dX2UKGgGaAloD0MIRuuoagK0bkCUhpRSlGgVTZ0BaBZHQJQTV74SHuZ1fZQoaAZoCWgPQwh5A8x8B+FuQJSGlFKUaBVNVAFoFkdAlBOZhWo3rHV9lChoBmgJaA9DCDpdFhMb1GxAlIaUUpRoFU2SAWgWR0CUE8+fywwCdX2UKGgGaAloD0MIGsOcoM0ebECUhpRSlGgVTVMBaBZHQJQUEAeaKDV1fZQoaAZoCWgPQwh8Zd6qawduQJSGlFKUaBVNsAFoFkdAlBTB3NcGDHV9lChoBmgJaA9DCPeRW5Nue3BAlIaUUpRoFU0dAWgWR0CUFpFkhA4XdX2UKGgGaAloD0MIW18ktOVQcUCUhpRSlGgVTRwCaBZHQJQYfsXzlLh1fZQoaAZoCWgPQwgrbAa4IOtwQJSGlFKUaBVNRwFoFkdAlBjEipvP1XV9lChoBmgJaA9DCFK3s6+8rGtAlIaUUpRoFU3oA2gWR0CUHNoJzDGcdX2UKGgGaAloD0MIWHIVi18xcUCUhpRSlGgVTfABaBZHQJQd90W/JvJ1fZQoaAZoCWgPQwgu5ueGJgluQJSGlFKUaBVNYQFoFkdAlB9ObmU4aXV9lChoBmgJaA9DCLggW5Yvqm1AlIaUUpRoFU3RAWgWR0CUH9zLOiWWdX2UKGgGaAloD0MI6gQ0ETb7X0CUhpRSlGgVTegDaBZHQJQgu8ujASF1fZQoaAZoCWgPQwhWKT3TSy5sQJSGlFKUaBVNIgFoFkdAlCErpeNT+HV9lChoBmgJaA9DCHPxtz3BaG5AlIaUUpRoFU0oAWgWR0CUITdZJTVEdX2UKGgGaAloD0MI/u2yX/eBb0CUhpRSlGgVTYgBaBZHQJQibb+Lm6p1fZQoaAZoCWgPQwgjhEcbx41xQJSGlFKUaBVNHwFoFkdAlCWxdyDIzXV9lChoBmgJaA9DCLdB7bf21W9AlIaUUpRoFU2gAWgWR0CUJhDdP+GXdX2UKGgGaAloD0MIC/Dd5o1kbkCUhpRSlGgVTUwDaBZHQJQmXF5v9+B1fZQoaAZoCWgPQwg2yvrNhGVwQJSGlFKUaBVNTgFoFkdAlCds8cMmW3V9lChoBmgJaA9DCEZDxqNUfXBAlIaUUpRoFU2DAWgWR0CUJ9Djin50dX2UKGgGaAloD0MIDd5X5UK1bkCUhpRSlGgVTc0BaBZHQJQoFaNdZ7p1fZQoaAZoCWgPQwhL6C6Js4pvQJSGlFKUaBVNDgJoFkdAlCwbeMyaeHV9lChoBmgJaA9DCI8ZqIx/BnFAlIaUUpRoFU1FAWgWR0CURm0L+glGdX2UKGgGaAloD0MIyLQ2jW2wa0CUhpRSlGgVTW0BaBZHQJRGkQ4CIUJ1fZQoaAZoCWgPQwiSsG8nka9wQJSGlFKUaBVNmQFoFkdAlEeEfDDTB3V9lChoBmgJaA9DCAYsuYrFymxAlIaUUpRoFU1WAWgWR0CUSIL+PzWgdX2UKGgGaAloD0MIlnuBWeEKcECUhpRSlGgVTZUBaBZHQJRJdAt4A0d1fZQoaAZoCWgPQwgdrtUednlyQJSGlFKUaBVNbQFoFkdAlEl0JSiudXV9lChoBmgJaA9DCA+Yh0x5vWxAlIaUUpRoFU2SAWgWR0CUTEfl6qsEdX2UKGgGaAloD0MICB7f3jW7bUCUhpRSlGgVTb4BaBZHQJRMZ24d6s11fZQoaAZoCWgPQwg7pu7KrrlsQJSGlFKUaBVNaAFoFkdAlE4GAPNFB3V9lChoBmgJaA9DCGRXWkbq/29AlIaUUpRoFU15AWgWR0CUThvicXnAdX2UKGgGaAloD0MIut3LffJ2cECUhpRSlGgVTYIBaBZHQJRQk1TBInV1fZQoaAZoCWgPQwgX00z3usNvQJSGlFKUaBVNsgFoFkdAlFJHJHRTj3V9lChoBmgJaA9DCGl0B7HzZnBAlIaUUpRoFU07AWgWR0CUU997WuoxdX2UKGgGaAloD0MIh9uhYTHVbkCUhpRSlGgVTXYBaBZHQJRUbs4T9Kp1fZQoaAZoCWgPQwjIQQkzbZ9fQJSGlFKUaBVN6ANoFkdAlFURVyWAw3V9lChoBmgJaA9DCG6jAbzFDnFAlIaUUpRoFU1XAWgWR0CUVv0kGA09dX2UKGgGaAloD0MIt+7mqU6ccECUhpRSlGgVTUgBaBZHQJRXSSU1Q691fZQoaAZoCWgPQwj/d0SFqnhyQJSGlFKUaBVNUAFoFkdAlFeabrkbP3V9lChoBmgJaA9DCD1gHjIlCXFAlIaUUpRoFU0dAmgWR0CUV63zcynDdX2UKGgGaAloD0MIk4/dBQoocECUhpRSlGgVTVkBaBZHQJRaxE+gUUR1fZQoaAZoCWgPQwhg6udNRSZwQJSGlFKUaBVNXgFoFkdAlFsjK9wm3XV9lChoBmgJaA9DCAd96e3PcXJAlIaUUpRoFU1MAWgWR0CUXCc2itaIdX2UKGgGaAloD0MIhQfNrntNb0CUhpRSlGgVTcwBaBZHQJRidRJmNBF1fZQoaAZoCWgPQwhHdTqQNVBwQJSGlFKUaBVNkwFoFkdAlGKcZ9/jKnV9lChoBmgJaA9DCBQH0O/7PW9AlIaUUpRoFU1vAWgWR0CUYrM9bHIZdX2UKGgGaAloD0MI5zi3Cff6cUCUhpRSlGgVTUYBaBZHQJRjn0xubZx1fZQoaAZoCWgPQwhJY7SOqrtwQJSGlFKUaBVNZgFoFkdAlGPXGsFMZnV9lChoBmgJaA9DCN1bkZigNm5AlIaUUpRoFU1JAWgWR0CUZz1jy4FzdX2UKGgGaAloD0MIKa+V0F2YbUCUhpRSlGgVTZcBaBZHQJRnUkhRqGl1fZQoaAZoCWgPQwgOL4hIzd1wQJSGlFKUaBVNcwFoFkdAlGnC31BdEHV9lChoBmgJaA9DCAnDgCVXWm9AlIaUUpRoFU0WA2gWR0CUaqBhhH9WdX2UKGgGaAloD0MI4ICWruAFb0CUhpRSlGgVTT0BaBZHQJRrv1lGwzN1fZQoaAZoCWgPQwgsLLgf8MxiQJSGlFKUaBVN6ANoFkdAlGxEJjUd73V9lChoBmgJaA9DCCnOUUfHZm1AlIaUUpRoFU2yAWgWR0CUbLTxXnyNdX2UKGgGaAloD0MIKsb5m9AEbkCUhpRSlGgVTVoBaBZHQJRs5kGzKLd1fZQoaAZoCWgPQwhpigCn9/xuQJSGlFKUaBVNrwFoFkdAlGznctXgcnV9lChoBmgJaA9DCCXmWUkrrihAlIaUUpRoFU0dAWgWR0CUclk6cRUWdX2UKGgGaAloD0MIr1sExvq+bUCUhpRSlGgVTTABaBZHQJR0vsXzlLh1fZQoaAZoCWgPQwgJ+gs94tVuQJSGlFKUaBVNTgFoFkdAlHUu98JD3XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (227 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 202.00366612898165, "std_reward": 64.67733841250407, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-12T00:41:58.034960"}