|
""" |
|
A much shorter version of train.py for benchmarking |
|
""" |
|
import os |
|
from contextlib import nullcontext |
|
import numpy as np |
|
import time |
|
import torch |
|
from modeling_gpt import GPTConfig, GPT |
|
|
|
|
|
batch_size = 12 |
|
block_size = 1024 |
|
bias = False |
|
real_data = True |
|
seed = 1337 |
|
device = 'cuda' |
|
dtype = 'bfloat16' if torch.cuda.is_bf16_supported() else 'float16' |
|
compile = True |
|
profile = False |
|
exec(open('configurator.py').read()) |
|
|
|
|
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
device_type = 'cuda' if 'cuda' in device else 'cpu' |
|
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] |
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) |
|
|
|
|
|
if real_data: |
|
dataset = 'openwebtext' |
|
data_dir = os.path.join('data', dataset) |
|
train_data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') |
|
def get_batch(split): |
|
data = train_data |
|
ix = torch.randint(len(data) - block_size, (batch_size,)) |
|
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix]) |
|
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix]) |
|
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True) |
|
return x, y |
|
else: |
|
|
|
x = torch.randint(50304, (batch_size, block_size), device=device) |
|
y = torch.randint(50304, (batch_size, block_size), device=device) |
|
get_batch = lambda split: (x, y) |
|
|
|
|
|
gptconf = GPTConfig( |
|
block_size = block_size, |
|
n_layer = 12, n_head = 12, n_embd = 768, |
|
dropout = 0, |
|
bias = bias, |
|
) |
|
model = GPT(gptconf) |
|
model.to(device) |
|
|
|
optimizer = model.configure_optimizers(weight_decay=1e-2, learning_rate=1e-4, betas=(0.9, 0.95), device_type=device_type) |
|
|
|
if compile: |
|
print("Compiling model...") |
|
model = torch.compile(model) |
|
|
|
if profile: |
|
|
|
|
|
|
|
wait, warmup, active = 5, 5, 5 |
|
num_steps = wait + warmup + active |
|
with torch.profiler.profile( |
|
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], |
|
schedule=torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=1), |
|
on_trace_ready=torch.profiler.tensorboard_trace_handler('./bench_log'), |
|
record_shapes=False, |
|
profile_memory=False, |
|
with_stack=False, |
|
with_flops=True, |
|
with_modules=False, |
|
) as prof: |
|
|
|
X, Y = get_batch('train') |
|
for k in range(num_steps): |
|
with ctx: |
|
logits, loss = model(X, Y) |
|
X, Y = get_batch('train') |
|
optimizer.zero_grad(set_to_none=True) |
|
loss.backward() |
|
optimizer.step() |
|
lossf = loss.item() |
|
print(f"{k}/{num_steps} loss: {lossf:.4f}") |
|
|
|
prof.step() |
|
|
|
else: |
|
|
|
|
|
torch.cuda.synchronize() |
|
for stage, num_steps in enumerate([10, 20]): |
|
t0 = time.time() |
|
X, Y = get_batch('train') |
|
for k in range(num_steps): |
|
with ctx: |
|
logits, loss = model(X, Y) |
|
X, Y = get_batch('train') |
|
optimizer.zero_grad(set_to_none=True) |
|
loss.backward() |
|
optimizer.step() |
|
lossf = loss.item() |
|
print(f"{k}/{num_steps} loss: {lossf:.4f}") |
|
torch.cuda.synchronize() |
|
t1 = time.time() |
|
dt = t1-t0 |
|
mfu = model.estimate_mfu(batch_size * 1 * num_steps, dt) |
|
if stage == 1: |
|
print(f"time per iteration: {dt/num_steps*1000:.4f}ms, MFU: {mfu*100:.2f}%") |
|
|