AnirudhRajagopalan1201 commited on
Commit
b059692
1 Parent(s): 0a4ba23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
- {}
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - roneneldan/TinyStories
4
  ---
5
+ ---
6
+ Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759, based on LLaMA architecture.
7
+
8
+ ---
9
+ Hyperparams used to train this model:
10
+ ```
11
+ "batch_size": 32,
12
+
13
+ "block_size": 256,
14
+
15
+ "lr": 5e-4,
16
+
17
+ "num_hidden_layers": 8,
18
+
19
+ "num_attention_heads": 8,
20
+
21
+ "hidden_size": 160,
22
+
23
+ "dropout": 0.1,
24
+
25
+ "weight_decay": 0.01,
26
+
27
+ "epochs": 1,
28
+
29
+ "eval_interval": 200,
30
+
31
+ "eval_steps": 50,
32
+
33
+ "vocab_size": 50257,
34
+
35
+ "warmup_tokens": 10000,
36
+
37
+ "gradient_accumulation_steps": 16,
38
+ ```
39
+ ---
40
+ EXAMPLE USAGE
41
+ ```py
42
+ !pip install --quiet transformers
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+ from huggingface_hub import notebook_login, login
45
+ import os
46
+
47
+ #login to hf to check for llama access
48
+ hf_token = os.getenv('HF_TOKEN')
49
+ login(token=hf_token)
50
+
51
+ model = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinyllama-20M')
52
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
53
+ prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked"
54
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
55
+ output = model.generate(input_ids, temperature=0.1, max_length = 100, do_sample=True)
56
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
57
+ print(output_text)
58
+
59
+ ```