Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1724.14 +/- 312.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afee2511bf2cd99395d7c6ea73948b4e1704c2c95442c99dfa32f80f69da11e6
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc2cd7a4af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc2cd7a4b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc2cd7a4c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc2cd7a4ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc2cd7a4d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc2cd7a4dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc2cd7a4e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc2cd7a4ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc2cd7a4f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc2cd7ac040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc2cd7ac0d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc2cd7ac160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc2cd7a98c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679362995485326316,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFpiFT8fMKE+At/hPpRwuz8hKHo7Suvovr9U4r5/iH2/nI0yv2c4Y793PHC+u8DaP/R/973rxuu/kzIePzlhmb9V8d4+DeCrv4V8j74HFvI+1XEZv7wbSj9E8HA/Lkv2vzS0hb9aJBQ/F0HWPlCthL+g3Qa/wxaVP0MaeL7zg5Q/rZQnvvt8lD26/KU+UNGRvr/WmL6rjj69gEMRvy2UBL9Ccrc+sGKxP7Bzuz46QKg/kdQIPyTFB0BVc14/l9BVv6UiO7/qUrU9llQSvigdyD40tIW/WiQUP5XwGMDK+XY/+A9mv/h7Ab8AEwU/vDNjP11Ctr9mhKM++w/ePV4VSD8cACY/BKyHP7fWGb+d43e+W0/7vhtzyz+EwRK95BmDPyQBwr1pbOE/UAxOPidkGr/XeDe/zPovPZ4n87597SQ/NLSFv1okFD+V8BjAyvl2PwydQL/bMQk/8ROpPsa8xj/N+BO/Ja1JP8LDfz4W9ea9J/sBvllu1z7NwGk+xg8rP1sGlL7vo2u/yXQeP9mszr95DDS96QhIvw4vLz8tBqU/4bsxv9CF2T4WA0W/Vt7gvzS0hb9zMd2/F0HWPlCthL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAmOLy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVnQoPQAAAADENOO/AAAAABB2trwAAAAA7U/2PwAAAABvE8+9AAAAAOrZ4D8AAAAALL2TPQAAAACr+um/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYo5JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJpCtbwAAAAAmA3pvwAAAAB6U/q9AAAAADhz7D8AAAAATiX1PQAAAAAPtO8/AAAAAFaJ6b0AAAAAZubkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK0PjrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBtcl69AAAAAHz5/78AAAAAEOervAAAAAAPy/w/AAAAAINoAb4AAAAAKDPiPwAAAADSaKw9AAAAALOb6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGX9Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaKGMvQAAAAAonvy/AAAAAPrGDD4AAAAAqYP0PwAAAABlbb89AAAAACq+3j8AAAAARCbzPAAAAACO4vC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJV/etV7x/eMAWyUTegDjAF0lEdAqc5QvN/vv3V9lChoBkdAkuob/wRXfmgHTegDaAhHQKnPzz8P4Eh1fZQoaAZHQJHjbNwBHTZoB03oA2gIR0Cp0U7/XGwSdX2UKGgGR0CQKWNcW0qpaAdN6ANoCEdAqdPvS4OMEXV9lChoBkdAjZtZf+jubGgHTegDaAhHQKnaOa5PM0R1fZQoaAZHQJNPoT6BRQ9oB03oA2gIR0Cp27YAjps5dX2UKGgGR0CRLihDw6QvaAdN6ANoCEdAqd2DFdcB2nV9lChoBkdAjrvRYRujymgHTegDaAhHQKnhc8zQ/ot1fZQoaAZHQJIog1KoQ4FoB03oA2gIR0Cp6YZwfhdddX2UKGgGR0CRvfPkaMrFaAdN6ANoCEdAqesGLYPGyXV9lChoBkdAl7hhP420iWgHTegDaAhHQKnshr3TNMZ1fZQoaAZHQJfijsVtXPtoB03oA2gIR0Cp7ybxVhkRdX2UKGgGR0CRejW8RL9NaAdN6ANoCEdAqfVp6QeV9nV9lChoBkdAkyJHWz4UOGgHTegDaAhHQKn29ot+TeR1fZQoaAZHQJYptXp4bCJoB03oA2gIR0Cp+HNVBD5TdX2UKGgGR0CEYBHU+cH4aAdN6ANoCEdAqftlIZqEe3V9lChoBkdAjwQ4GMXJo2gHTegDaAhHQKoE0hnrY5F1fZQoaAZHQJH6TdGiHqNoB03oA2gIR0CqBlqoIfKZdX2UKGgGR0CPfjU6xPfsaAdN6ANoCEdAqgfjGR3eN3V9lChoBkdAl3+FGTcIq2gHTegDaAhHQKoKo5byH211fZQoaAZHQIfk5n3+MqBoB03oA2gIR0CqERQH7gsLdX2UKGgGR0CXmbFAE+xGaAdN6ANoCEdAqhKX2VVxTHV9lChoBkdAlslR28qWkmgHTegDaAhHQKoUHbcGkep1fZQoaAZHQJc6vwrlNlBoB03oA2gIR0CqFtmoJiRXdX2UKGgGR0COIGCQtBfKaAdN6ANoCEdAqh9s43m3fHV9lChoBkdAmCm7m+0w8GgHTegDaAhHQKoh7D2rXDp1fZQoaAZHQJowja/RE4NoB03oA2gIR0CqI/WRJVbSdX2UKGgGR0Ca6io73fygaAdN6ANoCEdAqiavxvvSdHV9lChoBkdAfSgTNMXaamgHTegDaAhHQKos62oegct1fZQoaAZHQJI9fr5ZbINoB03oA2gIR0CqLmmb1AZ9dX2UKGgGR0CW5dizcAR1aAdN6ANoCEdAqi/whdMTOHV9lChoBkdAkWJePBBRh2gHTegDaAhHQKoyuc1fmcR1fZQoaAZHQIqUN70Fr2xoB03oA2gIR0CqOgjVpbljdX2UKGgGR0CQxeg3Lmp3aAdN6ANoCEdAqjxmOIZZS3V9lChoBkdAiIW4zabnYGgHTegDaAhHQKo+1F85S3t1fZQoaAZHQI+xfMY/FBJoB03oA2gIR0CqQnMhHLA6dX2UKGgGR0CSFLmnfl6raAdN6ANoCEdAqkjS0Y0l7nV9lChoBkdAhaX+Lehwl2gHTegDaAhHQKpKXFb3XZp1fZQoaAZHQIdM5FG5MDhoB03oA2gIR0CqS+D/MnqndX2UKGgGR0CLcqYYR/ViaAdN6ANoCEdAqk6P1Hvtt3V9lChoBkdAkJ9/HPu5SWgHTegDaAhHQKpU5M9KVY91fZQoaAZHQJhGyL0jC55oB03oA2gIR0CqVtm4qgAZdX2UKGgGR0CU6gCJXQt0aAdN6ANoCEdAqlkL3wkPc3V9lChoBkdAglkchkiD/WgHTegDaAhHQKpdQm51/2F1fZQoaAZHQJcQecAiml9oB03oA2gIR0CqZGmvW6K+dX2UKGgGR0CY0Znyup0faAdN6ANoCEdAqmX15UtI1HV9lChoBkdAg6fppFkQPWgHTegDaAhHQKpncZof0Vd1fZQoaAZHQJgoCKgqVhVoB03oA2gIR0Cqaj9tVJcxdX2UKGgGR0CYE3ZxJd0JaAdN6ANoCEdAqnCCBI4EOnV9lChoBkdAiwlmwaBI4GgHTegDaAhHQKpyB4agmJF1fZQoaAZHQIBzHjZL7GhoB03oA2gIR0Cqc5FDOTq0dX2UKGgGR0CLx6d+5OJtaAdN6ANoCEdAqndmGZeAu3V9lChoBkdAkRlb4N7SiWgHTegDaAhHQKqAH+XqqwR1fZQoaAZHQJck7t6X0GxoB03oA2gIR0CqgZ/dyksSdX2UKGgGR0CPBW5Lh73PaAdN6ANoCEdAqoMl7IDHO3V9lChoBkdAmB6zOgQHzGgHTegDaAhHQKqF06bvw3J1fZQoaAZHQJjIjvZyuIRoB03oA2gIR0CqjBfViF0xdX2UKGgGR0CaBnnLq2SdaAdN6ANoCEdAqo2TOcDr7nV9lChoBkdAlzBXrQgLZ2gHTegDaAhHQKqPF6P8yet1fZQoaAZHQJTTuT7l7t1oB03oA2gIR0CqkdWkBS1mdX2UKGgGR0CS8y5cTrVwaAdN6ANoCEdAqpte4NI9T3V9lChoBkdAkpjug6EJ0GgHTegDaAhHQKqdRBDXvph1fZQoaAZHQJad89lmOENoB03oA2gIR0CqnsXbEgnudX2UKGgGR0CTfRcwxnFpaAdN6ANoCEdAqqFvwuuie3V9lChoBkdAkzf2V7hNumgHTegDaAhHQKqn3UG3WnV1fZQoaAZHQJLXFqbjLjhoB03oA2gIR0CqqWaZ6UqydX2UKGgGR0CRvCxyXD3uaAdN6ANoCEdAqqrqZOSGJ3V9lChoBkdAlB88IE8q4GgHTegDaAhHQKqtlkc0cfh1fZQoaAZHQJEX3a11GLFoB03oA2gIR0Cqtasj3VTadX2UKGgGR0CSO5cz67/XaAdN6ANoCEdAqrgPNxEORXV9lChoBkdAlNeZyp71I2gHTegDaAhHQKq6a82aUiZ1fZQoaAZHQJLYH2FnIyVoB03oA2gIR0CqvTKNAC4jdX2UKGgGR0COilAQg9vCaAdN6ANoCEdAqsNol0HQhXV9lChoBkdAlDstd7fHgmgHTegDaAhHQKrE6l67dzp1fZQoaAZHQJGaVsUIsy1oB03oA2gIR0Cqxny8jAzpdX2UKGgGR0CTrgB9Cu2aaAdN6ANoCEdAqskjD0lJH3V9lChoBkdAkhVfYzzmOmgHTegDaAhHQKrP3FuvUz91fZQoaAZHQJXFK9lEqlRoB03oA2gIR0Cq0gr6+FlDdX2UKGgGR0CY9k5imVJMaAdN6ANoCEdAqtRk+X7cf3V9lChoBkdAkDeedkJ8fGgHTegDaAhHQKrYq3o9s8B1fZQoaAZHQJj4sWYWtU5oB03oA2gIR0Cq3wFX7tRfdX2UKGgGR0CZKMfHPu5SaAdN6ANoCEdAquB5lHz6J3V9lChoBkdAk4wbsfJV82gHTegDaAhHQKrh8uxrzoV1fZQoaAZHQJKz/xnWattoB03oA2gIR0Cq5KFSbYsedX2UKGgGR0CVr05avA45aAdN6ANoCEdAqur6jBVMmHV9lChoBkdAlv5aErXlKmgHTegDaAhHQKrsexM36yl1fZQoaAZHQIswsxGlQ/JoB03oA2gIR0Cq7oc5jpcHdX2UKGgGR0CbiFV1wHZ9aAdN6ANoCEdAqvJm3lS0jXV9lChoBkdAlRStR3u/lGgHTegDaAhHQKr6dkMkQf91fZQoaAZHQJg6GQfZElVoB03oA2gIR0Cq/AQ04zacdX2UKGgGR0CDqfrDZUT+aAdN6ANoCEdAqv2XLkjop3V9lChoBkdAmI5pSrHU+mgHTegDaAhHQKsAN+bVjI91fZQoaAZHQJmaWJdjXnRoB03oA2gIR0CrBoJH7P6bdX2UKGgGR0Cd5m5iExqPaAdN6ANoCEdAqwgV9Dx9X3V9lChoBkdAlHVhPGhmG2gHTegDaAhHQKsJmMwUQCl1fZQoaAZHQJqCzH1e0HBoB03oA2gIR0CrDNod2gWadX2UKGgGR0CbcvJP69CeaAdN6ANoCEdAqxZpNM495nV9lChoBkdAhuaKynk1dmgHTegDaAhHQKsX8qSX+l11fZQoaAZHQJktokiUxEhoB03oA2gIR0CrGWpN9H+ZdX2UKGgGR0CcOQzPrv9caAdN6ANoCEdAqxwRJXhfjXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec5097243b200fcef0e616f2ad0909e5230cc8939f81a440221f20e29f628276
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25d037d69381dac6121acb2ec2d3abbc2b2dfce3ad061ef217c04d7490fa9b20
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc2cd7a4af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc2cd7a4b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc2cd7a4c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc2cd7a4ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fc2cd7a4d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fc2cd7a4dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc2cd7a4e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc2cd7a4ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc2cd7a4f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc2cd7ac040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc2cd7ac0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc2cd7ac160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc2cd7a98c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679362995485326316, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFpiFT8fMKE+At/hPpRwuz8hKHo7Suvovr9U4r5/iH2/nI0yv2c4Y793PHC+u8DaP/R/973rxuu/kzIePzlhmb9V8d4+DeCrv4V8j74HFvI+1XEZv7wbSj9E8HA/Lkv2vzS0hb9aJBQ/F0HWPlCthL+g3Qa/wxaVP0MaeL7zg5Q/rZQnvvt8lD26/KU+UNGRvr/WmL6rjj69gEMRvy2UBL9Ccrc+sGKxP7Bzuz46QKg/kdQIPyTFB0BVc14/l9BVv6UiO7/qUrU9llQSvigdyD40tIW/WiQUP5XwGMDK+XY/+A9mv/h7Ab8AEwU/vDNjP11Ctr9mhKM++w/ePV4VSD8cACY/BKyHP7fWGb+d43e+W0/7vhtzyz+EwRK95BmDPyQBwr1pbOE/UAxOPidkGr/XeDe/zPovPZ4n87597SQ/NLSFv1okFD+V8BjAyvl2PwydQL/bMQk/8ROpPsa8xj/N+BO/Ja1JP8LDfz4W9ea9J/sBvllu1z7NwGk+xg8rP1sGlL7vo2u/yXQeP9mszr95DDS96QhIvw4vLz8tBqU/4bsxv9CF2T4WA0W/Vt7gvzS0hb9zMd2/F0HWPlCthL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAmOLy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVnQoPQAAAADENOO/AAAAABB2trwAAAAA7U/2PwAAAABvE8+9AAAAAOrZ4D8AAAAALL2TPQAAAACr+um/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYo5JNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJpCtbwAAAAAmA3pvwAAAAB6U/q9AAAAADhz7D8AAAAATiX1PQAAAAAPtO8/AAAAAFaJ6b0AAAAAZubkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK0PjrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBtcl69AAAAAHz5/78AAAAAEOervAAAAAAPy/w/AAAAAINoAb4AAAAAKDPiPwAAAADSaKw9AAAAALOb6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGX9Y2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaKGMvQAAAAAonvy/AAAAAPrGDD4AAAAAqYP0PwAAAABlbb89AAAAACq+3j8AAAAARCbzPAAAAACO4vC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJV/etV7x/eMAWyUTegDjAF0lEdAqc5QvN/vv3V9lChoBkdAkuob/wRXfmgHTegDaAhHQKnPzz8P4Eh1fZQoaAZHQJHjbNwBHTZoB03oA2gIR0Cp0U7/XGwSdX2UKGgGR0CQKWNcW0qpaAdN6ANoCEdAqdPvS4OMEXV9lChoBkdAjZtZf+jubGgHTegDaAhHQKnaOa5PM0R1fZQoaAZHQJNPoT6BRQ9oB03oA2gIR0Cp27YAjps5dX2UKGgGR0CRLihDw6QvaAdN6ANoCEdAqd2DFdcB2nV9lChoBkdAjrvRYRujymgHTegDaAhHQKnhc8zQ/ot1fZQoaAZHQJIog1KoQ4FoB03oA2gIR0Cp6YZwfhdddX2UKGgGR0CRvfPkaMrFaAdN6ANoCEdAqesGLYPGyXV9lChoBkdAl7hhP420iWgHTegDaAhHQKnshr3TNMZ1fZQoaAZHQJfijsVtXPtoB03oA2gIR0Cp7ybxVhkRdX2UKGgGR0CRejW8RL9NaAdN6ANoCEdAqfVp6QeV9nV9lChoBkdAkyJHWz4UOGgHTegDaAhHQKn29ot+TeR1fZQoaAZHQJYptXp4bCJoB03oA2gIR0Cp+HNVBD5TdX2UKGgGR0CEYBHU+cH4aAdN6ANoCEdAqftlIZqEe3V9lChoBkdAjwQ4GMXJo2gHTegDaAhHQKoE0hnrY5F1fZQoaAZHQJH6TdGiHqNoB03oA2gIR0CqBlqoIfKZdX2UKGgGR0CPfjU6xPfsaAdN6ANoCEdAqgfjGR3eN3V9lChoBkdAl3+FGTcIq2gHTegDaAhHQKoKo5byH211fZQoaAZHQIfk5n3+MqBoB03oA2gIR0CqERQH7gsLdX2UKGgGR0CXmbFAE+xGaAdN6ANoCEdAqhKX2VVxTHV9lChoBkdAlslR28qWkmgHTegDaAhHQKoUHbcGkep1fZQoaAZHQJc6vwrlNlBoB03oA2gIR0CqFtmoJiRXdX2UKGgGR0COIGCQtBfKaAdN6ANoCEdAqh9s43m3fHV9lChoBkdAmCm7m+0w8GgHTegDaAhHQKoh7D2rXDp1fZQoaAZHQJowja/RE4NoB03oA2gIR0CqI/WRJVbSdX2UKGgGR0Ca6io73fygaAdN6ANoCEdAqiavxvvSdHV9lChoBkdAfSgTNMXaamgHTegDaAhHQKos62oegct1fZQoaAZHQJI9fr5ZbINoB03oA2gIR0CqLmmb1AZ9dX2UKGgGR0CW5dizcAR1aAdN6ANoCEdAqi/whdMTOHV9lChoBkdAkWJePBBRh2gHTegDaAhHQKoyuc1fmcR1fZQoaAZHQIqUN70Fr2xoB03oA2gIR0CqOgjVpbljdX2UKGgGR0CQxeg3Lmp3aAdN6ANoCEdAqjxmOIZZS3V9lChoBkdAiIW4zabnYGgHTegDaAhHQKo+1F85S3t1fZQoaAZHQI+xfMY/FBJoB03oA2gIR0CqQnMhHLA6dX2UKGgGR0CSFLmnfl6raAdN6ANoCEdAqkjS0Y0l7nV9lChoBkdAhaX+Lehwl2gHTegDaAhHQKpKXFb3XZp1fZQoaAZHQIdM5FG5MDhoB03oA2gIR0CqS+D/MnqndX2UKGgGR0CLcqYYR/ViaAdN6ANoCEdAqk6P1Hvtt3V9lChoBkdAkJ9/HPu5SWgHTegDaAhHQKpU5M9KVY91fZQoaAZHQJhGyL0jC55oB03oA2gIR0CqVtm4qgAZdX2UKGgGR0CU6gCJXQt0aAdN6ANoCEdAqlkL3wkPc3V9lChoBkdAglkchkiD/WgHTegDaAhHQKpdQm51/2F1fZQoaAZHQJcQecAiml9oB03oA2gIR0CqZGmvW6K+dX2UKGgGR0CY0Znyup0faAdN6ANoCEdAqmX15UtI1HV9lChoBkdAg6fppFkQPWgHTegDaAhHQKpncZof0Vd1fZQoaAZHQJgoCKgqVhVoB03oA2gIR0Cqaj9tVJcxdX2UKGgGR0CYE3ZxJd0JaAdN6ANoCEdAqnCCBI4EOnV9lChoBkdAiwlmwaBI4GgHTegDaAhHQKpyB4agmJF1fZQoaAZHQIBzHjZL7GhoB03oA2gIR0Cqc5FDOTq0dX2UKGgGR0CLx6d+5OJtaAdN6ANoCEdAqndmGZeAu3V9lChoBkdAkRlb4N7SiWgHTegDaAhHQKqAH+XqqwR1fZQoaAZHQJck7t6X0GxoB03oA2gIR0CqgZ/dyksSdX2UKGgGR0CPBW5Lh73PaAdN6ANoCEdAqoMl7IDHO3V9lChoBkdAmB6zOgQHzGgHTegDaAhHQKqF06bvw3J1fZQoaAZHQJjIjvZyuIRoB03oA2gIR0CqjBfViF0xdX2UKGgGR0CaBnnLq2SdaAdN6ANoCEdAqo2TOcDr7nV9lChoBkdAlzBXrQgLZ2gHTegDaAhHQKqPF6P8yet1fZQoaAZHQJTTuT7l7t1oB03oA2gIR0CqkdWkBS1mdX2UKGgGR0CS8y5cTrVwaAdN6ANoCEdAqpte4NI9T3V9lChoBkdAkpjug6EJ0GgHTegDaAhHQKqdRBDXvph1fZQoaAZHQJad89lmOENoB03oA2gIR0CqnsXbEgnudX2UKGgGR0CTfRcwxnFpaAdN6ANoCEdAqqFvwuuie3V9lChoBkdAkzf2V7hNumgHTegDaAhHQKqn3UG3WnV1fZQoaAZHQJLXFqbjLjhoB03oA2gIR0CqqWaZ6UqydX2UKGgGR0CRvCxyXD3uaAdN6ANoCEdAqqrqZOSGJ3V9lChoBkdAlB88IE8q4GgHTegDaAhHQKqtlkc0cfh1fZQoaAZHQJEX3a11GLFoB03oA2gIR0Cqtasj3VTadX2UKGgGR0CSO5cz67/XaAdN6ANoCEdAqrgPNxEORXV9lChoBkdAlNeZyp71I2gHTegDaAhHQKq6a82aUiZ1fZQoaAZHQJLYH2FnIyVoB03oA2gIR0CqvTKNAC4jdX2UKGgGR0COilAQg9vCaAdN6ANoCEdAqsNol0HQhXV9lChoBkdAlDstd7fHgmgHTegDaAhHQKrE6l67dzp1fZQoaAZHQJGaVsUIsy1oB03oA2gIR0Cqxny8jAzpdX2UKGgGR0CTrgB9Cu2aaAdN6ANoCEdAqskjD0lJH3V9lChoBkdAkhVfYzzmOmgHTegDaAhHQKrP3FuvUz91fZQoaAZHQJXFK9lEqlRoB03oA2gIR0Cq0gr6+FlDdX2UKGgGR0CY9k5imVJMaAdN6ANoCEdAqtRk+X7cf3V9lChoBkdAkDeedkJ8fGgHTegDaAhHQKrYq3o9s8B1fZQoaAZHQJj4sWYWtU5oB03oA2gIR0Cq3wFX7tRfdX2UKGgGR0CZKMfHPu5SaAdN6ANoCEdAquB5lHz6J3V9lChoBkdAk4wbsfJV82gHTegDaAhHQKrh8uxrzoV1fZQoaAZHQJKz/xnWattoB03oA2gIR0Cq5KFSbYsedX2UKGgGR0CVr05avA45aAdN6ANoCEdAqur6jBVMmHV9lChoBkdAlv5aErXlKmgHTegDaAhHQKrsexM36yl1fZQoaAZHQIswsxGlQ/JoB03oA2gIR0Cq7oc5jpcHdX2UKGgGR0CbiFV1wHZ9aAdN6ANoCEdAqvJm3lS0jXV9lChoBkdAlRStR3u/lGgHTegDaAhHQKr6dkMkQf91fZQoaAZHQJg6GQfZElVoB03oA2gIR0Cq/AQ04zacdX2UKGgGR0CDqfrDZUT+aAdN6ANoCEdAqv2XLkjop3V9lChoBkdAmI5pSrHU+mgHTegDaAhHQKsAN+bVjI91fZQoaAZHQJmaWJdjXnRoB03oA2gIR0CrBoJH7P6bdX2UKGgGR0Cd5m5iExqPaAdN6ANoCEdAqwgV9Dx9X3V9lChoBkdAlHVhPGhmG2gHTegDaAhHQKsJmMwUQCl1fZQoaAZHQJqCzH1e0HBoB03oA2gIR0CrDNod2gWadX2UKGgGR0CbcvJP69CeaAdN6ANoCEdAqxZpNM495nV9lChoBkdAhuaKynk1dmgHTegDaAhHQKsX8qSX+l11fZQoaAZHQJktokiUxEhoB03oA2gIR0CrGWpN9H+ZdX2UKGgGR0CcOQzPrv9caAdN6ANoCEdAqxwRJXhfjXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02512144c75b25ab6e329d8a6bfe577f41001bed72b6feeca7486279141f2738
|
3 |
+
size 1040499
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1724.135241609317, "std_reward": 312.3253619760075, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T03:20:24.635485"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a75eb65279c332a2a44e040421451c5ee9bc8966d185ea870e4141ee7c0c454
|
3 |
+
size 2136
|