AngelJB commited on
Commit
0474968
1 Parent(s): 624491f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -14
README.md CHANGED
@@ -16,14 +16,14 @@ model-index:
16
  dataset:
17
  name: emotion
18
  type: emotion
19
- args: default
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
- value: 0.927
24
  - name: F1
25
  type: f1
26
- value: 0.9271664736493986
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,12 +31,11 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  # distilbert-base-uncased-finetuned-emotion
33
 
34
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. The model is trained in Chapter 2: Text Classification in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/02_classification.ipynb).
35
-
36
  It achieves the following results on the evaluation set:
37
- - Loss: 0.2192
38
- - Accuracy: 0.927
39
- - F1: 0.9272
40
 
41
  ## Model description
42
 
@@ -67,13 +66,13 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
70
- | 0.8569 | 1.0 | 250 | 0.3386 | 0.894 | 0.8888 |
71
- | 0.2639 | 2.0 | 500 | 0.2192 | 0.927 | 0.9272 |
72
 
73
 
74
  ### Framework versions
75
 
76
- - Transformers 4.11.3
77
- - Pytorch 1.9.1+cu102
78
- - Datasets 1.13.0
79
- - Tokenizers 0.10.3
 
16
  dataset:
17
  name: emotion
18
  type: emotion
19
+ args: split
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
+ value: 0.918
24
  - name: F1
25
  type: f1
26
+ value: 0.9180515336291696
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  # distilbert-base-uncased-finetuned-emotion
33
 
34
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
 
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.2250
37
+ - Accuracy: 0.918
38
+ - F1: 0.9181
39
 
40
  ## Model description
41
 
 
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
+ | 0.8132 | 1.0 | 250 | 0.3118 | 0.907 | 0.9055 |
70
+ | 0.2479 | 2.0 | 500 | 0.2250 | 0.918 | 0.9181 |
71
 
72
 
73
  ### Framework versions
74
 
75
+ - Transformers 4.16.2
76
+ - Pytorch 2.2.1+cu121
77
+ - Datasets 2.16.0
78
+ - Tokenizers 0.19.1