|
|
|
|
|
import math |
|
import logging |
|
from functools import partial |
|
from collections import OrderedDict |
|
from einops import rearrange, repeat |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import time |
|
|
|
from math import sqrt |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.models.helpers import load_pretrained |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., changedim=False, currentdim=0, depth=0): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False, bonechain=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.comb = comb |
|
self.vis = vis |
|
|
|
self.bonechain = bonechain |
|
|
|
|
|
def forward(self, x, vis=False): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
if self.comb==True: |
|
attn = (q.transpose(-2, -1) @ k) * self.scale |
|
elif self.comb==False: |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
if self.comb==True: |
|
x = (attn @ v.transpose(-2, -1)).transpose(-2, -1) |
|
x = rearrange(x, 'B H N C -> B N (H C)') |
|
elif self.comb==False: |
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
class Attention_xxc(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False, bonechain=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.qkv_xc = nn.Linear(dim, dim , bias=qkv_bias) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.comb = comb |
|
self.vis = vis |
|
|
|
self.bonechain = bonechain |
|
|
|
|
|
|
|
def forward(self, x, xc=None, vis=False): |
|
B, N, C = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
if xc==None: |
|
pass |
|
else: |
|
qkv_xc = self.qkv_xc(xc).reshape(B, N, 1, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
k_xc = qkv_xc[0] |
|
|
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
if self.comb==True: |
|
attn = (q.transpose(-2, -1) @ k) * self.scale |
|
elif self.comb==False: |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
|
if q.shape[-2]==17: |
|
for chain in self.bonechain: |
|
for idx in range(1,len(chain)-1): |
|
ppidx = chain[idx-1] |
|
pidx = chain[idx] |
|
cidx = chain[idx+1] |
|
attn[:,:,pidx,cidx] = (attn[:,:,pidx,cidx] + attn[:,:,ppidx,pidx]) /2.0 |
|
attn[:,:,cidx,pidx] = (attn[:,:,cidx,pidx] + attn[:,:,ppidx,pidx]) /2.0 |
|
|
|
else: |
|
if self.comb==True: |
|
xc_attn = (q.transpose(-2, -1) @ k_xc) * self.scale |
|
elif self.comb==False: |
|
xc_attn = (q @ k_xc.transpose(-2, -1)) * self.scale |
|
attn += xc_attn |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
if self.comb==True: |
|
x = (attn @ v.transpose(-2, -1)).transpose(-2, -1) |
|
x = rearrange(x, 'B H N C -> B N (H C)') |
|
elif self.comb==False: |
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None): |
|
super().__init__() |
|
|
|
self.changedim = changedim |
|
self.currentdim = currentdim |
|
self.depth = depth |
|
if self.changedim: |
|
assert self.depth>0 |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if self.changedim and self.currentdim < self.depth//2: |
|
self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1) |
|
|
|
elif self.changedim and depth > self.currentdim > self.depth//2: |
|
self.improve = nn.Conv1d(dim, dim*2, kernel_size=1) |
|
|
|
self.vis = vis |
|
|
|
|
|
def forward(self, x, vis=False): |
|
x = x + self.drop_path(self.attn(self.norm1(x), vis=vis)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
if self.changedim and self.currentdim < self.depth//2: |
|
x = rearrange(x, 'b t c -> b c t') |
|
x = self.reduction(x) |
|
x = rearrange(x, 'b c t -> b t c') |
|
elif self.changedim and self.depth > self.currentdim > self.depth//2: |
|
x = rearrange(x, 'b t c -> b c t') |
|
x = self.improve(x) |
|
x = rearrange(x, 'b c t -> b t c') |
|
return x |
|
|
|
class Block_xxc(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention_xxc, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None): |
|
super().__init__() |
|
|
|
self.changedim = changedim |
|
self.currentdim = currentdim |
|
self.depth = depth |
|
if self.changedim: |
|
assert self.depth>0 |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if self.changedim and self.currentdim < self.depth//2: |
|
self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1) |
|
|
|
elif self.changedim and depth > self.currentdim > self.depth//2: |
|
self.improve = nn.Conv1d(dim, dim*2, kernel_size=1) |
|
|
|
self.vis = vis |
|
|
|
|
|
def forward(self, x, xc=None, vis=False): |
|
if xc==None: |
|
x = x + self.drop_path(self.attn(self.norm1(x), vis=vis)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.attn(self.norm1(x), self.norm1(xc), vis=vis)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
if self.changedim and self.currentdim < self.depth//2: |
|
x = rearrange(x, 'b t c -> b c t') |
|
x = self.reduction(x) |
|
x = rearrange(x, 'b c t -> b t c') |
|
elif self.changedim and self.depth > self.currentdim > self.depth//2: |
|
x = rearrange(x, 'b t c -> b c t') |
|
x = self.improve(x) |
|
x = rearrange(x, 'b c t -> b t c') |
|
return x |
|
|
|
class SinusoidalPositionEmbeddings(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.dim = dim |
|
|
|
def forward(self, time): |
|
device = time.device |
|
half_dim = self.dim // 2 |
|
embeddings = math.log(10000) / (half_dim - 1) |
|
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings) |
|
embeddings = time[:, None] * embeddings[None, :] |
|
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1) |
|
return embeddings |
|
|
|
class MixSTE2(nn.Module): |
|
def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4, |
|
num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None, |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=None, is_train=True): |
|
""" ##########hybrid_backbone=None, representation_size=None, |
|
Args: |
|
num_frame (int, tuple): input frame number |
|
num_joints (int, tuple): joints number |
|
in_chans (int): number of input channels, 2D joints have 2 channels: (x,y) |
|
embed_dim_ratio (int): embedding dimension ratio |
|
depth (int): depth of transformer |
|
num_heads (int): number of attention heads |
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim |
|
qkv_bias (bool): enable bias for qkv if True |
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set |
|
drop_rate (float): dropout rate |
|
attn_drop_rate (float): attention dropout rate |
|
drop_path_rate (float): stochastic depth rate |
|
norm_layer: (nn.Module): normalization layer |
|
""" |
|
super().__init__() |
|
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) |
|
embed_dim = embed_dim_ratio |
|
out_dim = 3 |
|
self.is_train=is_train |
|
|
|
|
|
self.Spatial_patch_to_embedding = nn.Linear(in_chans + 3 + 1 , embed_dim_ratio) |
|
|
|
self.Spatial_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio)) |
|
|
|
|
|
self.Temporal_pos_embed = nn.Parameter(torch.zeros(1, num_frame, embed_dim)) |
|
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
self.time_mlp = nn.Sequential( |
|
SinusoidalPositionEmbeddings(embed_dim_ratio), |
|
nn.Linear(embed_dim_ratio, embed_dim_ratio*2), |
|
nn.GELU(), |
|
nn.Linear(embed_dim_ratio*2, embed_dim_ratio), |
|
) |
|
|
|
self.group = nn.Parameter(torch.zeros(1, 6, embed_dim)) |
|
self.lev0_list = [14] |
|
self.lev1_list = [8,11,15] |
|
self.lev2_list = [1,9,12,] |
|
self.lev3_list = [0,2,5,10,13,16] |
|
self.lev4_list = [3,6] |
|
self.lev5_list = [4,7] |
|
|
|
bonechain = [[14,8,9,10],[14,11,12,13],[14,15,1,0],[14,15,1,2,3,4],[14,15,1,5,6,7],[14,15,1,16]] |
|
|
|
self.bonedic = {0:None, 1:'0,2,5,16', 2:'3', 3:'4', 4:None, 5:'6', 6:'7', 7:None, 8:'9', 9:'10', 10:None, 11:'12', 12:'13', 13:None, 14:'8,11,15', 15:'1', 16:None} |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.block_depth = depth |
|
|
|
self.STEblocks_0 = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, bonechain=bonechain)]) |
|
self.STEblocks = nn.ModuleList([ |
|
|
|
Block_xxc( |
|
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, bonechain=bonechain) |
|
for i in range(1,depth)]) |
|
|
|
self.TTEblocks_0 = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, comb=False, changedim=False, currentdim=1, depth=depth, bonechain=bonechain)]) |
|
self.TTEblocks = nn.ModuleList([ |
|
Block_xxc( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, comb=False, changedim=False, currentdim=i+1, depth=depth, bonechain=bonechain) |
|
for i in range(1,depth)]) |
|
|
|
self.Spatial_norm = norm_layer(embed_dim_ratio) |
|
self.Temporal_norm = norm_layer(embed_dim) |
|
|
|
self.head_pose = nn.Sequential( |
|
nn.LayerNorm(embed_dim), |
|
nn.Linear(embed_dim , out_dim), |
|
) |
|
|
|
|
|
def STE_forward(self, x_2d, x_3d, t): |
|
|
|
if self.is_train: |
|
x = torch.cat((x_2d, x_3d), dim=-1) |
|
b, f, n, c = x.shape |
|
x = rearrange(x, 'b f n c -> (b f) n c', ) |
|
|
|
x = self.Spatial_patch_to_embedding(x) |
|
|
|
|
|
|
|
for lev in range(6): |
|
lev_list = eval('self.lev{:}_list'.format(lev)) |
|
for idx in lev_list: |
|
x[:,idx,:] += self.group[0][lev:lev+1] |
|
|
|
x += self.Spatial_pos_embed |
|
|
|
time_embed = self.time_mlp(t)[:, None, None, :].repeat(1,f,n,1) |
|
time_embed = rearrange(time_embed, 'b f n c -> (b f) n c', ) |
|
x += time_embed |
|
else: |
|
x_2d = x_2d[:,None].repeat(1,x_3d.shape[1],1,1,1) |
|
x = torch.cat((x_2d, x_3d), dim=-1) |
|
b, h, f, n, c = x.shape |
|
x = rearrange(x, 'b h f n c -> (b h f) n c', ) |
|
x = self.Spatial_patch_to_embedding(x) |
|
|
|
|
|
for lev in range(6): |
|
lev_list = eval('self.lev{:}_list'.format(lev)) |
|
for idx in lev_list: |
|
x[:,idx,:] += self.group[0][lev:lev+1] |
|
x += self.Spatial_pos_embed |
|
time_embed = self.time_mlp(t)[:, None, None, None, :].repeat(1, h, f, n, 1) |
|
time_embed = rearrange(time_embed, 'b h f n c -> (b h f) n c', ) |
|
x += time_embed |
|
|
|
x = self.pos_drop(x) |
|
|
|
blk = self.STEblocks_0[0] |
|
x = blk(x) |
|
|
|
|
|
x = self.Spatial_norm(x) |
|
x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f) |
|
return x |
|
|
|
def TTE_foward(self, x): |
|
assert len(x.shape) == 3, "shape is equal to 3" |
|
b, f, _ = x.shape |
|
x += self.Temporal_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
blk = self.TTEblocks_0[0] |
|
x = blk(x) |
|
|
|
|
|
|
|
x = self.Temporal_norm(x) |
|
return x |
|
|
|
def ST_foward(self, x,xc): |
|
assert len(x.shape)==4, "shape is equal to 4" |
|
b, f, n, cw = x.shape |
|
|
|
for i in range(0, self.block_depth-1): |
|
x = rearrange(x, 'b f n cw -> (b f) n cw') |
|
steblock = self.STEblocks[i] |
|
tteblock = self.TTEblocks[i] |
|
|
|
x = steblock(x) |
|
x = self.Spatial_norm(x) |
|
x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f) |
|
|
|
x = tteblock(x,xc) |
|
x = self.Temporal_norm(x) |
|
x = rearrange(x, '(b n) f cw -> b f n cw', n=n) |
|
|
|
return x |
|
|
|
|
|
def forward(self, x_2d, x_3d_dir, x_3d_bone, t): |
|
x_3d = torch.cat((x_3d_dir,x_3d_bone), dim=-1) |
|
if self.is_train: |
|
b, f, n, c = x_2d.shape |
|
else: |
|
b, h, f, n, c = x_3d.shape |
|
|
|
x_2d, t = x_2d.float(), t.float() |
|
|
|
x = self.STE_forward(x_2d, x_3d, t,) |
|
|
|
x = self.TTE_foward(x) |
|
|
|
x = rearrange(x, '(b n) f cw -> b f n cw', n=n) |
|
|
|
xc_list = [] |
|
xc = x.clone() |
|
for idx in range(17): |
|
pidx = idx |
|
if self.bonedic[idx]: |
|
cidx = [int(x) for x in self.bonedic[idx].split(',')] |
|
xc_cidx = xc[:,:,cidx] |
|
xc_cidx = torch.cat((xc_cidx , xc[:,:,pidx:pidx+1]),dim=2).mean(2) |
|
else: |
|
xc_cidx = xc[:,:,pidx:pidx+1].squeeze(2) |
|
xc_list.append(xc_cidx) |
|
xc = torch.stack(xc_list,dim=2) |
|
|
|
x = self.ST_foward(x,xc) |
|
|
|
x_pos = self.head_pose(x) |
|
if self.is_train: |
|
x_pos = x_pos.view(b, f, n, -1) |
|
else: |
|
x_pos = x_pos.view(b, h, f, n, -1) |
|
|
|
return x_pos |
|
|
|
|
|
|