|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from itertools import zip_longest |
|
import numpy as np |
|
|
|
|
|
class ChunkedGenerator_Seq: |
|
""" |
|
Batched data generator, used for training. |
|
The sequences are split into equal-length chunks and padded as necessary. |
|
|
|
Arguments: |
|
batch_size -- the batch size to use for training |
|
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training) |
|
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training) |
|
poses_2d -- list of input 2D keypoints, one element for each video |
|
chunk_length -- number of output frames to predict for each training example (usually 1) |
|
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field) |
|
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad") |
|
shuffle -- randomly shuffle the dataset before each epoch |
|
random_seed -- initial seed to use for the random generator |
|
augment -- augment the dataset by flipping poses horizontally |
|
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled |
|
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled |
|
""" |
|
def __init__(self, batch_size, cameras, poses_3d, poses_2d, |
|
chunk_length, pad=0, causal_shift=0, |
|
shuffle=True, random_seed=1234, |
|
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None, |
|
endless=False): |
|
assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d)) |
|
assert cameras is None or len(cameras) == len(poses_2d) |
|
|
|
|
|
pairs = [] |
|
for key in poses_2d.keys(): |
|
assert poses_3d is None or poses_2d[key].shape[0] == poses_3d[key].shape[0] |
|
n_chunks = (poses_2d[key].shape[0] + chunk_length - 1) // chunk_length |
|
offset = (n_chunks * chunk_length - poses_2d[key].shape[0]) // 2 |
|
bounds = np.arange(n_chunks+1)*chunk_length - offset |
|
augment_vector = np.full(len(bounds - 1), False, dtype=bool) |
|
keys = np.tile(np.array(key).reshape([1, 3]), (len(bounds - 1), 1)) |
|
pairs += zip(keys, bounds[:-1], bounds[1:], augment_vector) |
|
if augment: |
|
pairs += zip(keys, bounds[:-1], bounds[1:], ~augment_vector) |
|
|
|
|
|
if cameras is not None: |
|
self.batch_cam = np.empty((batch_size, cameras[0].shape[-1])) |
|
if poses_3d is not None: |
|
self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[key].shape[-2], poses_3d[key].shape[-1])) |
|
self.batch_2d = np.empty((batch_size, chunk_length, poses_2d[key].shape[-2], poses_2d[key].shape[-1])) |
|
|
|
self.num_batches = (len(pairs) + batch_size - 1) // batch_size |
|
self.batch_size = batch_size |
|
self.random = np.random.RandomState(random_seed) |
|
self.pairs = pairs |
|
self.shuffle = shuffle |
|
self.pad = pad |
|
self.causal_shift = causal_shift |
|
self.endless = endless |
|
self.state = None |
|
|
|
self.cameras = cameras |
|
self.poses_3d = poses_3d |
|
self.poses_2d = poses_2d |
|
|
|
self.augment = augment |
|
self.kps_left = kps_left |
|
self.kps_right = kps_right |
|
self.joints_left = joints_left |
|
self.joints_right = joints_right |
|
|
|
def num_frames(self): |
|
return self.num_batches * self.batch_size |
|
|
|
def batch_num(self): |
|
return self.num_batches |
|
|
|
def random_state(self): |
|
return self.random |
|
|
|
def set_random_state(self, random): |
|
self.random = random |
|
|
|
def augment_enabled(self): |
|
return self.augment |
|
|
|
def next_pairs(self): |
|
if self.state is None: |
|
if self.shuffle: |
|
np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning) |
|
pairs = self.random.permutation(self.pairs) |
|
else: |
|
pairs = self.pairs |
|
return 0, pairs |
|
else: |
|
return self.state |
|
|
|
def next_epoch(self): |
|
enabled = True |
|
while enabled: |
|
start_idx, pairs = self.next_pairs() |
|
for b_i in range(start_idx, self.num_batches): |
|
chunks = pairs[b_i*self.batch_size : (b_i+1)*self.batch_size] |
|
for i, (seq_i, start_3d, end_3d, flip) in enumerate(chunks): |
|
subject, seq, cam_index = seq_i |
|
seq_name = (subject, seq, cam_index) |
|
|
|
start_2d = start_3d |
|
|
|
end_2d = end_3d |
|
|
|
|
|
seq_2d = self.poses_2d[seq_name] |
|
low_2d = max(start_2d, 0) |
|
high_2d = min(end_2d, seq_2d.shape[0]) |
|
pad_left_2d = low_2d - start_2d |
|
pad_right_2d = end_2d - high_2d |
|
if pad_left_2d != 0 or pad_right_2d != 0: |
|
self.batch_2d[i] = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), 'edge') |
|
else: |
|
self.batch_2d[i] = seq_2d[low_2d:high_2d] |
|
|
|
if flip: |
|
|
|
self.batch_2d[i, :, :, 0] *= -1 |
|
self.batch_2d[i, :, self.kps_left + self.kps_right] = self.batch_2d[i, :, self.kps_right + self.kps_left] |
|
|
|
|
|
if self.poses_3d is not None: |
|
seq_3d = self.poses_3d[seq_name] |
|
low_3d = max(start_3d, 0) |
|
high_3d = min(end_3d, seq_3d.shape[0]) |
|
pad_left_3d = low_3d - start_3d |
|
pad_right_3d = end_3d - high_3d |
|
if pad_left_3d != 0 or pad_right_3d != 0: |
|
self.batch_3d[i] = np.pad(seq_3d[low_3d:high_3d], ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge') |
|
else: |
|
self.batch_3d[i] = seq_3d[low_3d:high_3d] |
|
|
|
if flip: |
|
|
|
self.batch_3d[i, :, :, 0] *= -1 |
|
self.batch_3d[i, :, self.joints_left + self.joints_right] = \ |
|
self.batch_3d[i, :, self.joints_right + self.joints_left] |
|
|
|
|
|
if self.cameras is not None: |
|
self.batch_cam[i] = self.cameras[seq_name] |
|
if flip: |
|
|
|
self.batch_cam[i, 2] *= -1 |
|
self.batch_cam[i, 7] *= -1 |
|
|
|
if self.endless: |
|
self.state = (b_i + 1, pairs) |
|
if self.poses_3d is None and self.cameras is None: |
|
yield None, None, self.batch_2d[:len(chunks)] |
|
elif self.poses_3d is not None and self.cameras is None: |
|
yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)] |
|
elif self.poses_3d is None: |
|
yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)] |
|
else: |
|
yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)] |
|
|
|
if self.endless: |
|
self.state = None |
|
else: |
|
enabled = False |
|
|
|
|
|
class UnchunkedGenerator_Seq: |
|
""" |
|
Non-batched data generator, used for testing. |
|
Sequences are returned one at a time (i.e. batch size = 1), without chunking. |
|
|
|
If data augmentation is enabled, the batches contain two sequences (i.e. batch size = 2), |
|
the second of which is a mirrored version of the first. |
|
|
|
Arguments: |
|
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training) |
|
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training) |
|
poses_2d -- list of input 2D keypoints, one element for each video |
|
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field) |
|
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad") |
|
augment -- augment the dataset by flipping poses horizontally |
|
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled |
|
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled |
|
""" |
|
|
|
def __init__(self, cameras, poses_3d, poses_2d, pad=0, causal_shift=0, |
|
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None, valid_frame=None): |
|
assert poses_3d is None or len(poses_3d) == len(poses_2d) |
|
assert cameras is None or len(cameras) == len(poses_2d) |
|
|
|
self.augment = False |
|
self.kps_left = kps_left |
|
self.kps_right = kps_right |
|
self.joints_left = joints_left |
|
self.joints_right = joints_right |
|
|
|
self.pad = pad |
|
self.causal_shift = causal_shift |
|
self.cameras = [] if cameras is None else cameras |
|
self.poses_3d = [] if poses_3d is None else poses_3d |
|
self.valid_frame = [] if valid_frame is None else valid_frame |
|
self.poses_2d = poses_2d |
|
|
|
def num_frames(self): |
|
count = 0 |
|
for p in self.poses_2d: |
|
count += self.poses_2d[p].shape[0] |
|
return count |
|
|
|
def batch_num(self): |
|
return self.num_batches |
|
|
|
def augment_enabled(self): |
|
return self.augment |
|
|
|
def set_augment(self, augment): |
|
self.augment = augment |
|
|
|
def next_epoch(self): |
|
for (k_3d,seq_3d), (k_2d,seq_2d), (k_v,valid_f) in zip_longest(self.poses_3d.items(), self.poses_2d.items(), self.valid_frame.items()): |
|
batch_cam = None |
|
batch_3d = None if seq_3d is None else np.expand_dims(seq_3d, axis=0) |
|
batch_2d = None if seq_2d is None else np.expand_dims(seq_2d, axis=0) |
|
batch_valid = None if valid_f is None else valid_f |
|
|
|
|
|
|
|
if self.augment: |
|
|
|
if batch_cam is not None: |
|
batch_cam = np.concatenate((batch_cam, batch_cam), axis=0) |
|
batch_cam[1, 2] *= -1 |
|
batch_cam[1, 7] *= -1 |
|
|
|
if batch_3d is not None: |
|
batch_3d = np.concatenate((batch_3d, batch_3d), axis=0) |
|
batch_3d[1, :, :, 0] *= -1 |
|
batch_3d[1, :, self.joints_left + self.joints_right] = batch_3d[1, :, self.joints_right + self.joints_left] |
|
|
|
batch_2d = np.concatenate((batch_2d, batch_2d), axis=0) |
|
batch_2d[1, :, :, 0] *= -1 |
|
batch_2d[1, :, self.kps_left + self.kps_right] = batch_2d[1, :, self.kps_right + self.kps_left] |
|
|
|
if batch_valid is None: |
|
yield batch_cam, batch_3d, batch_2d |
|
else: |
|
yield batch_cam, batch_3d, batch_2d, batch_valid, k_3d |
|
|
|
class UnchunkedGenerator_Seq2Seq: |
|
""" |
|
Non-batched data generator, used for testing. |
|
Sequences are returned one at a time (i.e. batch size = 1), without chunking. |
|
|
|
If data augmentation is enabled, the batches contain two sequences (i.e. batch size = 2), |
|
the second of which is a mirrored version of the first. |
|
|
|
Arguments: |
|
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training) |
|
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training) |
|
poses_2d -- list of input 2D keypoints, one element for each video |
|
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field) |
|
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad") |
|
augment -- augment the dataset by flipping poses horizontally |
|
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled |
|
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled |
|
""" |
|
|
|
def __init__(self, cameras, poses_3d, poses_2d, pad=0, causal_shift=0, |
|
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None): |
|
assert poses_3d is None or len(poses_3d) == len(poses_2d) |
|
assert cameras is None or len(cameras) == len(poses_2d) |
|
|
|
self.augment = False |
|
self.kps_left = kps_left |
|
self.kps_right = kps_right |
|
self.joints_left = joints_left |
|
self.joints_right = joints_right |
|
|
|
self.pad = pad |
|
self.causal_shift = causal_shift |
|
self.cameras = [] if cameras is None else cameras |
|
self.poses_3d = [] if poses_3d is None else poses_3d |
|
self.poses_2d = poses_2d |
|
|
|
def num_frames(self): |
|
count = 0 |
|
for p in self.poses_2d: |
|
count += p.shape[0] |
|
return count |
|
|
|
def augment_enabled(self): |
|
return self.augment |
|
|
|
def batch_num(self): |
|
return self.num_batches |
|
|
|
def set_augment(self, augment): |
|
self.augment = augment |
|
|
|
def next_epoch(self): |
|
for seq_cam, seq_3d, seq_2d in zip_longest(self.cameras, self.poses_3d, self.poses_2d): |
|
batch_cam = None if seq_cam is None else np.expand_dims(seq_cam, axis=0) |
|
batch_3d = None if seq_3d is None else np.expand_dims(np.pad(seq_3d, |
|
((self.pad + self.causal_shift, self.pad - self.causal_shift), (0, 0), (0, 0)), |
|
'edge'), axis=0) |
|
batch_2d = np.expand_dims(np.pad(seq_2d, |
|
((self.pad + self.causal_shift, self.pad - self.causal_shift), (0, 0), (0, 0)), |
|
'edge'), axis=0) |
|
if self.augment: |
|
|
|
if batch_cam is not None: |
|
batch_cam = np.concatenate((batch_cam, batch_cam), axis=0) |
|
batch_cam[1, 2] *= -1 |
|
batch_cam[1, 7] *= -1 |
|
|
|
if batch_3d is not None: |
|
batch_3d = np.concatenate((batch_3d, batch_3d), axis=0) |
|
batch_3d[1, :, :, 0] *= -1 |
|
batch_3d[1, :, self.joints_left + self.joints_right] = batch_3d[1, :, self.joints_right + self.joints_left] |
|
|
|
batch_2d = np.concatenate((batch_2d, batch_2d), axis=0) |
|
batch_2d[1, :, :, 0] *= -1 |
|
batch_2d[1, :, self.kps_left + self.kps_right] = batch_2d[1, :, self.kps_right + self.kps_left] |
|
|
|
yield batch_cam, batch_3d, batch_2d |
|
|