|
import numpy as np |
|
import torch |
|
|
|
from common.utils import wrap |
|
from common.quaternion import qrot, qinverse |
|
|
|
def normalize_screen_coordinates(X, w, h): |
|
assert X.shape[-1] == 2 |
|
|
|
|
|
return X/w*2 - [1, h/w] |
|
|
|
|
|
def image_coordinates(X, w, h): |
|
assert X.shape[-1] == 2 |
|
|
|
|
|
return (X + [1, h/w])*w/2 |
|
|
|
|
|
def world_to_camera(X, R, t): |
|
Rt = wrap(qinverse, R) |
|
return wrap(qrot, np.tile(Rt, (*X.shape[:-1], 1)), X - t) |
|
|
|
|
|
def camera_to_world(X, R, t): |
|
return wrap(qrot, np.tile(R, (*X.shape[:-1], 1)), X) + t |
|
|
|
|
|
def project_to_2d(X, camera_params): |
|
""" |
|
Project 3D points to 2D using the Human3.6M camera projection function. |
|
This is a differentiable and batched reimplementation of the original MATLAB script. |
|
|
|
Arguments: |
|
X -- 3D points in *camera space* to transform (N, *, 3) |
|
camera_params -- intrinsic parameteres (N, 2+2+3+2=9) |
|
""" |
|
assert X.shape[-1] == 3 |
|
assert len(camera_params.shape) == 2 |
|
assert camera_params.shape[-1] == 9 |
|
assert X.shape[0] == camera_params.shape[0] |
|
|
|
while len(camera_params.shape) < len(X.shape): |
|
camera_params = camera_params.unsqueeze(1) |
|
|
|
f = camera_params[..., :2] |
|
c = camera_params[..., 2:4] |
|
k = camera_params[..., 4:7] |
|
p = camera_params[..., 7:] |
|
|
|
XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1) |
|
r2 = torch.sum(XX[..., :2]**2, dim=len(XX.shape)-1, keepdim=True) |
|
|
|
radial = 1 + torch.sum(k * torch.cat((r2, r2**2, r2**3), dim=len(r2.shape)-1), dim=len(r2.shape)-1, keepdim=True) |
|
tan = torch.sum(p*XX, dim=len(XX.shape)-1, keepdim=True) |
|
|
|
XXX = XX*(radial + tan) + p*r2 |
|
|
|
return f*XXX + c |
|
|
|
def project_to_2d_linear(X, camera_params): |
|
""" |
|
Project 3D points to 2D using only linear parameters (focal length and principal point). |
|
|
|
Arguments: |
|
X -- 3D points in *camera space* to transform (N, *, 3) |
|
camera_params -- intrinsic parameteres (N, 2+2+3+2=9) |
|
""" |
|
assert X.shape[-1] == 3 |
|
assert len(camera_params.shape) == 2 |
|
assert camera_params.shape[-1] == 9 |
|
assert X.shape[0] == camera_params.shape[0] |
|
|
|
while len(camera_params.shape) < len(X.shape): |
|
camera_params = camera_params.unsqueeze(1) |
|
|
|
f = camera_params[..., :2] |
|
c = camera_params[..., 2:4] |
|
|
|
XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1) |
|
|
|
return f*XX + c |
|
|
|
def uvd2xyz(uvd, gt_3D, cam): |
|
""" |
|
transfer uvd to xyz |
|
:param uvd: N*T*V*3 (uv and z channel) |
|
:param gt_3D: N*T*V*3 (NOTE: V=0 is absolute depth value of root joint) |
|
:return: root-relative xyz results |
|
""" |
|
N, T, V,_ = uvd.size() |
|
|
|
|
|
dec_out_all = uvd.view(-1, T, V, 3).clone() |
|
root = gt_3D[:, :, 0, :].unsqueeze(-2).repeat(1, 1, V, 1).clone() |
|
enc_in_all = uvd[:, :, :, :2].view(-1, T, V, 2).clone() |
|
|
|
cam_f_all = cam[..., :2].view(-1,1,1,2).repeat(1,T,V,1) |
|
cam_c_all = cam[..., 2:4].view(-1,1,1,2).repeat(1,T,V,1) |
|
|
|
|
|
z_global = dec_out_all[:, :, :, 2] |
|
z_global[:, :, 0] = root[:, :, 0, 2] |
|
z_global[:, :, 1:] = dec_out_all[:, :, 1:, 2] + root[:, :, 1:, 2] |
|
z_global = z_global.unsqueeze(-1) |
|
|
|
uv = enc_in_all - cam_c_all |
|
xy = uv * z_global.repeat(1, 1, 1, 2) / cam_f_all |
|
xyz_global = torch.cat((xy, z_global), -1) |
|
xyz_offset = (xyz_global - xyz_global[:, :, 0, :].unsqueeze(-2).repeat(1, 1, V, 1)) |
|
|
|
|
|
return xyz_offset |