|
|
|
|
|
|
|
|
|
|
|
$CHANNEL_SUBTILE = 8 |
|
$assert CHANNEL_TILE % CHANNEL_SUBTILE == 0 |
|
$CHANNEL_ROUND = 4 |
|
$assert MIDDLE_PASS_TILE <= LAST_PASS_TILE |
|
$assert FIRST_PASS_TILE >= 1 |
|
$assert MIDDLE_PASS_TILE >= 1 |
|
$assert LAST_PASS_TILE >= 1 |
|
$assert ACCUMULATORS >= 1 |
|
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
#include <assert.h> |
|
#include <stddef.h> |
|
#include <stdint.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/dwconv.h> |
|
#include <xnnpack/intrinsics-polyfill.h> |
|
#include <xnnpack/math.h> |
|
|
|
|
|
void xnn_f16_dwconv_minmax_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__fma3${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( |
|
size_t channels, |
|
size_t output_width, |
|
const void** input, |
|
const void* weights, |
|
void* output, |
|
intptr_t input_stride, |
|
size_t output_increment, |
|
size_t input_offset, |
|
const void* zero, |
|
size_t kernel_size, |
|
void* buffer, |
|
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS |
|
{ |
|
assert(channels != 0); |
|
assert(output_width != 0); |
|
assert(kernel_size > ${FIRST_PASS_TILE}); |
|
|
|
const __m256 vmax = _mm256_load_ps(params->avx.max); |
|
const __m256 vmin = _mm256_load_ps(params->avx.min); |
|
do { |
|
const uint16_t* w = weights; |
|
|
|
|
|
{ |
|
uint16_t* b = buffer; |
|
$for K in range(FIRST_PASS_TILE): |
|
const uint16_t* i${K} = input[${K}]; |
|
assert(i${K} != NULL); |
|
if XNN_UNPREDICTABLE(i${K} != zero) { |
|
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); |
|
} |
|
input += ${FIRST_PASS_TILE}; |
|
|
|
|
|
size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); |
|
$if CHANNEL_TILE > 8: |
|
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); |
|
$else: |
|
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${C}))); |
|
|
|
$for K in range(FIRST_PASS_TILE): |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); |
|
$else: |
|
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); |
|
i${K} += ${CHANNEL_TILE}; |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE + C}))); |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
_mm_store_si128((__m128i*) (b + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); |
|
b += ${CHANNEL_TILE}; |
|
} |
|
|
|
for (; c >= ${CHANNEL_SUBTILE}; c -= ${CHANNEL_SUBTILE}) { |
|
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); |
|
|
|
$for K in range(FIRST_PASS_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); |
|
i${K} += ${CHANNEL_SUBTILE}; |
|
|
|
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_SUBTILE}))); |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); |
|
b += ${CHANNEL_SUBTILE}; |
|
} |
|
|
|
if (c != 0) { |
|
assert(c >= 1); |
|
assert(c <= ${CHANNEL_SUBTILE-1}); |
|
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); |
|
|
|
$for K in range(FIRST_PASS_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); |
|
|
|
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_SUBTILE}))); |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); |
|
} |
|
} |
|
|
|
|
|
for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) { |
|
uint16_t* b = buffer; |
|
$for K in range(MIDDLE_PASS_TILE): |
|
const uint16_t* i${K} = input[${K}]; |
|
assert(i${K} != NULL); |
|
if XNN_UNPREDICTABLE(i${K} != zero) { |
|
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); |
|
} |
|
input += ${MIDDLE_PASS_TILE}; |
|
|
|
size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); |
|
$if CHANNEL_TILE > 8: |
|
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); |
|
$else: |
|
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b + ${C}))); |
|
|
|
$for K in range(MIDDLE_PASS_TILE): |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); |
|
$else: |
|
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); |
|
i${K} += ${CHANNEL_TILE}; |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if K == 0 and C == 0: |
|
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); |
|
$else: |
|
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_TILE + C}))); |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
w += ${MIDDLE_PASS_TILE * CHANNEL_TILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
_mm_store_si128((__m128i*) (b + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); |
|
b += ${CHANNEL_TILE}; |
|
} |
|
|
|
for (; c >= 8; c -= 8) { |
|
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); |
|
|
|
$for K in range(MIDDLE_PASS_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); |
|
i${K} += ${CHANNEL_SUBTILE}; |
|
|
|
$if K == 0: |
|
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); |
|
$else: |
|
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_SUBTILE}))); |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
w += ${MIDDLE_PASS_TILE * CHANNEL_SUBTILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); |
|
b += ${CHANNEL_SUBTILE}; |
|
} |
|
|
|
if (c != 0) { |
|
assert(c >= 1); |
|
assert(c <= ${CHANNEL_SUBTILE-1}); |
|
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); |
|
|
|
$for K in range(MIDDLE_PASS_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); |
|
|
|
$if K == 0: |
|
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); |
|
$else: |
|
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K) * CHANNEL_SUBTILE}))); |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
w += ${(MIDDLE_PASS_TILE) * CHANNEL_SUBTILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); |
|
} |
|
} |
|
|
|
|
|
{ |
|
uint16_t* b = buffer; |
|
$for K in range(0, LAST_PASS_TILE): |
|
const uint16_t* i${K} = input[${K}]; |
|
assert(i${K} != NULL); |
|
if XNN_UNPREDICTABLE(i${K} != zero) { |
|
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); |
|
} |
|
|
|
size_t c = channels; |
|
$if CHANNEL_TILE > 8: |
|
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); |
|
$else: |
|
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b + ${C}))); |
|
b += ${CHANNEL_TILE}; |
|
|
|
$for K in range(LAST_PASS_TILE): |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); |
|
$else: |
|
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); |
|
i${K} += ${CHANNEL_TILE}; |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if K == 0 and C == 0: |
|
__m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); |
|
$else: |
|
__m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_TILE + C}))); |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
w += ${LAST_PASS_TILE * CHANNEL_TILE}; |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for C in range(0, CHANNEL_TILE, 8): |
|
vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
__m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vacc${ABC[C:C+8]}p0, vmin); |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
vacc${ABC[C:C+8]} = _mm256_min_ps(vacc${ABC[C:C+8]}, vmax); |
|
|
|
$for C in range(0, CHANNEL_TILE, 8): |
|
$if C == 0: |
|
_mm_storeu_si128((__m128i*) output, _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
_mm_storeu_si128((__m128i*) ((uint16_t*) output + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT)); |
|
output = (uint16_t*) output + ${CHANNEL_TILE}; |
|
} |
|
|
|
|
|
for (; c >= 8; c -= 8) { |
|
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); |
|
b += 8; |
|
|
|
$for K in range(LAST_PASS_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); |
|
i${K} += 8; |
|
|
|
$if K == 0: |
|
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); |
|
$else: |
|
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * 8}))); |
|
|
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
$if CHANNEL_TILE > 8: |
|
w += ${LAST_PASS_TILE * 8}; |
|
$else: |
|
w += ${LAST_PASS_TILE * CHANNEL_TILE}; |
|
|
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin); |
|
|
|
vacc01234567 = _mm256_min_ps(vacc01234567, vmax); |
|
|
|
_mm_storeu_si128((__m128i*) output, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT)); |
|
output = (uint16_t*) output + 8; |
|
} |
|
|
|
if XNN_UNLIKELY(c != 0) { |
|
assert(c >= 1); |
|
assert(c <= ${CHANNEL_SUBTILE-1}); |
|
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); |
|
$for K in range(LAST_PASS_TILE): |
|
|
|
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); |
|
$if K == 0: |
|
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); |
|
$else: |
|
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * 8}))); |
|
$if 1 <= K < ACCUMULATORS: |
|
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); |
|
$else: |
|
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); |
|
|
|
$if ACCUMULATORS > 1: |
|
|
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); |
|
$ACC_SLICE *= 2 |
|
|
|
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin); |
|
vacc01234567 = _mm256_min_ps(vacc01234567, vmax); |
|
|
|
__m128i vh01234567 = _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT); |
|
if (c & 4) { |
|
_mm_storel_epi64((__m128i*) output, vh01234567); |
|
vh01234567 = _mm_unpackhi_epi64(vh01234567, vh01234567); |
|
output = (uint16_t*) output + 4; |
|
} |
|
if (c & 2) { |
|
_mm_storeu_si32(output, vh01234567); |
|
vh01234567 = _mm_srli_epi64(vh01234567, 32); |
|
output = (uint16_t*) output + 2; |
|
} |
|
if (c & 1) { |
|
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vh01234567, 0); |
|
output = (uint16_t*) output + 1; |
|
} |
|
} |
|
|
|
} |
|
input = (const void**) (const uint16_t**) ((uintptr_t) input + input_stride); |
|
output = (uint16_t*) ((uintptr_t) output + output_increment); |
|
} while (--output_width != 0); |
|
} |
|
|