|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cfloat> |
|
#include <cmath> |
|
#include <functional> |
|
#include <limits> |
|
#include <memory> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <xnnpack.h> |
|
|
|
#include <benchmark/benchmark.h> |
|
#include <fp16/fp16.h> |
|
#include "bench/utils.h" |
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
#include "flatbuffers/include/flatbuffers/flatbuffers.h" |
|
#include "tensorflow/lite/interpreter.h" |
|
#include "tensorflow/lite/kernels/register.h" |
|
#include "tensorflow/lite/model.h" |
|
#include "tensorflow/lite/schema/schema_generated.h" |
|
#include "tensorflow/lite/version.h" |
|
#endif |
|
|
|
|
|
void xnnpack_convert_f16_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
|
|
|
std::vector<uint16_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
|
std::generate(input.begin(), input.end(), std::ref(f16rng)); |
|
std::vector<float> output(batch_size); |
|
std::fill(output.begin(), output.end(), std::nanf("")); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_f16_f32( |
|
1 , 1 , 1 , |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create F16->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_f16_f32(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape F16->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_f16_f32(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup F16->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run F16->F32 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete F16->F32 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(uint16_t) + sizeof(float)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
void xnnpack_convert_f32_f16(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
|
|
|
std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
|
std::generate(input.begin(), input.end(), std::ref(f32rng)); |
|
std::vector<uint16_t> output(batch_size); |
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) ); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_f32_f16( |
|
1 , 1 , 1 , |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create F32->F16 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_f32_f16(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape F32->F16 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_f32_f16(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup F32->F16 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run F32->F16 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete F32->F16 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint16_t)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
void xnnpack_convert_f32_qs8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
|
|
|
std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
|
std::generate(input.begin(), input.end(), std::ref(f32rng)); |
|
std::vector<int8_t> output(batch_size); |
|
std::fill(output.begin(), output.end(), 0); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_f32_qs8( |
|
1 , 1 , 1 , |
|
1.0f / 128.0f , 1 , |
|
std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(), |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create F32->QS8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_f32_qs8(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape F32->QS8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_f32_qs8(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup F32->QS8 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run F32->QS8 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete F32->QS8 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(int8_t)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
void xnnpack_convert_f32_qu8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
|
|
|
std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
|
std::generate(input.begin(), input.end(), std::ref(f32rng)); |
|
std::vector<uint8_t> output(batch_size); |
|
std::fill(output.begin(), output.end(), 0); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_f32_qu8( |
|
1 , 1 , 1 , |
|
1.0f / 128.0f , 127 , |
|
std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max(), |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create F32->QU8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_f32_qu8(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape F32->QU8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_f32_qu8(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup F32->QU8 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run F32->QU8 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete F32->QU8 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint8_t)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
void xnnpack_convert_qs8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto i8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
|
std::ref(rng)); |
|
|
|
std::vector<int8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(int8_t)); |
|
std::generate(input.begin(), input.end(), std::ref(i8rng)); |
|
std::vector<int8_t> output(batch_size); |
|
std::fill(output.begin(), output.end(), INT8_C(0xAA)); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_qs8( |
|
1 , 1 , 1 , |
|
0.75f , -1 , |
|
0.5f , 1 , |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create QS8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_qs8(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape QS8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_qs8(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup QS8 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run QS8 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete QS8 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(int8_t); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
void xnnpack_convert_qs8_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto i8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
|
std::ref(rng)); |
|
|
|
std::vector<int8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(int8_t)); |
|
std::generate(input.begin(), input.end(), std::ref(i8rng)); |
|
std::vector<float> output(batch_size); |
|
std::fill(output.begin(), output.end(), std::nanf("")); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_qs8_f32( |
|
1 , 1 , 1 , |
|
1.0f / 255.0f , -128 , |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create QS8->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_qs8_f32(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape QS8->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_qs8_f32(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup QS8->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run QS8->F32 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete QS8->F32 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(int8_t) + sizeof(float)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
void xnnpack_convert_qu8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto u8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()), |
|
std::ref(rng)); |
|
|
|
std::vector<uint8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
|
std::generate(input.begin(), input.end(), std::ref(u8rng)); |
|
std::vector<uint8_t> output(batch_size); |
|
std::fill(output.begin(), output.end(), UINT8_C(0xAA)); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_qu8( |
|
1 , 1 , 1 , |
|
0.75f , 125 , |
|
0.5f , 130 , |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create QU8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_qu8(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape QU8 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_qu8(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup QU8 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run QU8 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete QU8 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(uint8_t); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
void xnnpack_convert_qu8_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto u8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()), |
|
std::ref(rng)); |
|
|
|
std::vector<uint8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
|
std::generate(input.begin(), input.end(), std::ref(u8rng)); |
|
std::vector<float> output(batch_size); |
|
std::fill(output.begin(), output.end(), std::nanf("")); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t convert_op = nullptr; |
|
status = xnn_create_convert_nc_qu8_f32( |
|
1 , 1 , 1 , |
|
1.0f / 128.0f , 128 , |
|
0 , &convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create QU8->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_convert_nc_qu8_f32(convert_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape QU8->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_convert_nc_qu8_f32(convert_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup QU8->F32 Convert operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(convert_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run QU8->F32 Convert operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(convert_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete QU8->F32 Convert operator"); |
|
return; |
|
} |
|
convert_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(uint8_t) + sizeof(float)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
void tflite_convert_f16_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE); |
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT16), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT32) |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{0}}; |
|
const std::array<int32_t, 1> op_outputs{{1}}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{0}}; |
|
const std::array<int32_t, 1> graph_outputs{{1}}; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
uint16_t* input_data = reinterpret_cast<uint16_t*>(interpreter->tensor(0)->data.data); |
|
std::generate_n(input_data, batch_size, std::ref(f16rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(uint16_t) + sizeof(float)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
|
|
void tflite_convert_f32_qs8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE); |
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT32), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_INT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({1.0f / 128.0f }), |
|
builder.CreateVector<int64_t>({1 }))) |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{0}}; |
|
const std::array<int32_t, 1> op_outputs{{1}}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{0}}; |
|
const std::array<int32_t, 1> graph_outputs{{1}}; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate_n(interpreter->typed_tensor<float>(0), batch_size, std::ref(f32rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(int8_t)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
|
|
void tflite_convert_f32_qu8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE); |
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT32), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_UINT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({1.0f / 128.0f }), |
|
builder.CreateVector<int64_t>({127 }))) |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{0}}; |
|
const std::array<int32_t, 1> op_outputs{{1}}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{0}}; |
|
const std::array<int32_t, 1> graph_outputs{{1}}; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate_n(interpreter->typed_tensor<float>(0), batch_size, std::ref(f32rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint8_t)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
|
|
void tflite_convert_qs8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto i8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
|
std::ref(rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE); |
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_INT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({0.75f }), |
|
builder.CreateVector<int64_t>({-1 }))), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_INT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({0.5f }), |
|
builder.CreateVector<int64_t>({1 }))), |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{0}}; |
|
const std::array<int32_t, 1> op_outputs{{1}}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{0}}; |
|
const std::array<int32_t, 1> graph_outputs{{1}}; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate_n(interpreter->typed_tensor<int8_t>(0), batch_size, std::ref(i8rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(int8_t); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
|
|
void tflite_convert_qs8_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto i8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
|
std::ref(rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE); |
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_INT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({1.0f / 255.0f }), |
|
builder.CreateVector<int64_t>({-128 }))), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT32) |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{0}}; |
|
const std::array<int32_t, 1> op_outputs{{1}}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{0}}; |
|
const std::array<int32_t, 1> graph_outputs{{1}}; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate_n(interpreter->typed_tensor<int8_t>(0), batch_size, std::ref(i8rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(int8_t) + sizeof(float)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
|
|
void tflite_convert_qu8(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto u8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()), |
|
std::ref(rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE); |
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_UINT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({0.75f }), |
|
builder.CreateVector<int64_t>({125 }))), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_UINT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({0.5f }), |
|
builder.CreateVector<int64_t>({130 }))) |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{0}}; |
|
const std::array<int32_t, 1> op_outputs{{1}}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{0}}; |
|
const std::array<int32_t, 1> graph_outputs{{1}}; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate_n(interpreter->typed_tensor<uint8_t>(0), batch_size, std::ref(u8rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(uint8_t); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
|
|
void tflite_convert_qu8_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto u8rng = std::bind( |
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()), |
|
std::ref(rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE); |
|
|
|
std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_UINT8, 0 , 0 , |
|
tflite::CreateQuantizationParameters(builder, |
|
0 , 0 , |
|
builder.CreateVector<float>({1.0f / 128.0f }), |
|
builder.CreateVector<int64_t>({128 }))), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT32) |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{0}}; |
|
const std::array<int32_t, 1> op_outputs{{1}}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{0}}; |
|
const std::array<int32_t, 1> graph_outputs{{1}}; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate_n(interpreter->typed_tensor<uint8_t>(0), batch_size, std::ref(u8rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = batch_size * (sizeof(uint8_t) + sizeof(float)); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
#endif |
|
|
|
BENCHMARK(xnnpack_convert_f16_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, float>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_convert_f32_f16) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint16_t>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_convert_f32_qs8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, int8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_convert_f32_qu8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_convert_qs8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, int8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_convert_qs8_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, float>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_convert_qu8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, uint8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_convert_qu8_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, float>) |
|
->UseRealTime(); |
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
BENCHMARK(tflite_convert_f16_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, float>) |
|
->UseRealTime(); |
|
BENCHMARK(tflite_convert_f32_qs8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, int8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(tflite_convert_f32_qu8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(tflite_convert_qs8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, int8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(tflite_convert_qs8_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, float>) |
|
->UseRealTime(); |
|
BENCHMARK(tflite_convert_qu8) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, uint8_t>) |
|
->UseRealTime(); |
|
BENCHMARK(tflite_convert_qu8_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, float>) |
|
->UseRealTime(); |
|
#endif |
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN |
|
BENCHMARK_MAIN(); |
|
#endif |
|
|