|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <functional> |
|
#include <limits> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <xnnpack.h> |
|
|
|
#include <benchmark/benchmark.h> |
|
#include "bench/utils.h" |
|
|
|
|
|
static void channel_shuffle_x8(benchmark::State& state, const char* net) { |
|
const size_t batch_size = static_cast<size_t>(state.range(0)); |
|
const size_t groups = static_cast<size_t>(state.range(1)); |
|
const size_t group_channels = static_cast<size_t>(state.range(2)); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
|
|
|
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + batch_size * groups * group_channels); |
|
std::vector<uint8_t> output(batch_size * groups * group_channels); |
|
std::generate(input.begin(), input.end(), std::ref(u8rng)); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t channel_shuffle_op = nullptr; |
|
status = xnn_create_channel_shuffle_nc_x8( |
|
groups, group_channels, |
|
groups * group_channels , |
|
groups * group_channels , |
|
0 , &channel_shuffle_op); |
|
if (status != xnn_status_success || channel_shuffle_op == nullptr) { |
|
state.SkipWithError("failed to create X8 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_channel_shuffle_nc_x8( |
|
channel_shuffle_op, |
|
batch_size, |
|
nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape X8 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_channel_shuffle_nc_x8( |
|
channel_shuffle_op, |
|
input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup X8 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(channel_shuffle_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run X8 Channel Shuffle operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(channel_shuffle_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete X8 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
const size_t elements_per_iteration = batch_size * groups * group_channels; |
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
static void channel_shuffle_x32(benchmark::State& state, const char* net) { |
|
const size_t batch_size = static_cast<size_t>(state.range(0)); |
|
const size_t groups = static_cast<size_t>(state.range(1)); |
|
const size_t group_channels = static_cast<size_t>(state.range(2)); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
|
|
|
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + batch_size * groups * group_channels); |
|
std::vector<float> output(batch_size * groups * group_channels); |
|
std::generate(input.begin(), input.end(), std::ref(f32rng)); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t channel_shuffle_op = nullptr; |
|
status = xnn_create_channel_shuffle_nc_x32( |
|
groups, group_channels, |
|
groups * group_channels , |
|
groups * group_channels , |
|
0 , &channel_shuffle_op); |
|
if (status != xnn_status_success || channel_shuffle_op == nullptr) { |
|
state.SkipWithError("failed to create X32 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_channel_shuffle_nc_x32( |
|
channel_shuffle_op, |
|
batch_size, |
|
nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape X32 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_channel_shuffle_nc_x32( |
|
channel_shuffle_op, |
|
input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup X32 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(channel_shuffle_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run X32 Channel Shuffle operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(channel_shuffle_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete X32 Channel Shuffle operator"); |
|
return; |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
const size_t elements_per_iteration = batch_size * groups * group_channels; |
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
static void ShuffleNetV1G2Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({56 * 56, 2, 25}); |
|
b->Args({28 * 28, 2, 25}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 2, 50}); |
|
b->Args({14 * 14, 2, 50}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 2, 100}); |
|
b->Args({ 7 * 7, 2, 100}); |
|
} |
|
|
|
static void ShuffleNetV1G3Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({56 * 56, 3, 20}); |
|
b->Args({28 * 28, 3, 20}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 3, 40}); |
|
b->Args({14 * 14, 3, 40}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 3, 80}); |
|
b->Args({ 7 * 7, 3, 80}); |
|
} |
|
|
|
static void ShuffleNetV1G4Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({56 * 56, 4, 17}); |
|
b->Args({28 * 28, 4, 17}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 4, 34}); |
|
b->Args({14 * 14, 4, 34}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 4, 68}); |
|
b->Args({ 7 * 7, 4, 68}); |
|
} |
|
|
|
static void ShuffleNetV1G8Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({56 * 56, 8, 12}); |
|
b->Args({28 * 28, 8, 12}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 8, 24}); |
|
b->Args({14 * 14, 8, 24}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 8, 48}); |
|
b->Args({ 7 * 7, 8, 48}); |
|
} |
|
|
|
static void ShuffleNetV2x0_5Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 2, 24}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 2, 48}); |
|
|
|
|
|
|
|
b->Args({ 7 * 7, 2, 96}); |
|
} |
|
|
|
static void ShuffleNetV2x1_0Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 2, 58}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 2, 116}); |
|
|
|
|
|
|
|
b->Args({ 7 * 7, 2, 232}); |
|
} |
|
|
|
static void ShuffleNetV2x1_5Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 2, 88}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 2, 176}); |
|
|
|
|
|
|
|
b->Args({ 7 * 7, 2, 352}); |
|
} |
|
|
|
static void ShuffleNetV2x2_0Arguments(benchmark::internal::Benchmark* b) |
|
{ |
|
b->ArgNames({"N", "G", "GC"}); |
|
|
|
|
|
|
|
b->Args({28 * 28, 2, 122}); |
|
|
|
|
|
|
|
b->Args({14 * 14, 2, 244}); |
|
|
|
|
|
|
|
b->Args({ 7 * 7, 2, 488}); |
|
} |
|
|
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x05, "ShuffleNet v2 x0.5")->Apply(ShuffleNetV2x0_5Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x10, "ShuffleNet v2 x1.0")->Apply(ShuffleNetV2x1_0Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x15, "ShuffleNet v2 x1.5")->Apply(ShuffleNetV2x1_5Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x20, "ShuffleNet v2 x2.0")->Apply(ShuffleNetV2x2_0Arguments)->UseRealTime(); |
|
|
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x05, "ShuffleNet v2 x0.5")->Apply(ShuffleNetV2x0_5Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x10, "ShuffleNet v2 x1.0")->Apply(ShuffleNetV2x1_0Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x15, "ShuffleNet v2 x1.5")->Apply(ShuffleNetV2x1_5Arguments)->UseRealTime(); |
|
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x20, "ShuffleNet v2 x2.0")->Apply(ShuffleNetV2x2_0Arguments)->UseRealTime(); |
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN |
|
BENCHMARK_MAIN(); |
|
#endif |
|
|