|
|
|
|
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
#include <xnnpack/dwconv.h> |
|
#include <xnnpack/math.h> |
|
|
|
|
|
void xnn_f32_dwconv2d_chw_ukernel_5x5s2p2__scalar_${ROW_TILE}x1${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}( |
|
size_t input_height, |
|
size_t input_width, |
|
const float* input, |
|
const float* weights, |
|
const float* zero, |
|
float* output, |
|
uint32_t padding_top, |
|
const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(input_height != 0); |
|
assert(input_width != 0); |
|
assert(input_width % sizeof(float) == 0); |
|
assert(padding_top >= 1); |
|
assert(padding_top <= 2); |
|
|
|
const float vmax = params->scalar.max; |
|
const float vmin = params->scalar.min; |
|
|
|
const float vbias = weights[0]; |
|
$for R in range(5): |
|
$for S in range(5): |
|
const float vk${R}${S} = weights[${R*5+S+1}]; |
|
|
|
const uint32_t padding_top_less_1 = padding_top - 1; |
|
|
|
const float* i0 = zero; |
|
const float* i1 = (const float*) ((uintptr_t) input - ((-padding_top_less_1) & input_width)); |
|
const float* i2 = (const float*) ((uintptr_t) i1 + input_width); |
|
if XNN_UNPREDICTABLE(padding_top_less_1 != 0) { |
|
i1 = zero; |
|
} |
|
$for M in range(3, 3 + 2 * ROW_TILE): |
|
const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
|
|
|
$if ROW_TILE > 1: |
|
const size_t output_width = round_down_po2((input_width + (2 - 3 + 2 ) * sizeof(float)) / 2, sizeof(float)); |
|
|
|
float* o0 = output; |
|
$for M in range(1, ROW_TILE): |
|
float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
|
|
|
size_t padded_input_height = input_height + (padding_top_less_1 + 1) + 2 ; |
|
size_t output_height = (padded_input_height - 5 + 2 ) / 2; |
|
do { |
|
$for M in range(3, 3 + 2 * ROW_TILE): |
|
if XNN_UNPREDICTABLE(padded_input_height < ${3 + M}) { |
|
i${M} = zero; |
|
$if M % 2 == 0 and M <= 2 * ROW_TILE + 1: |
|
o${M |
|
} |
|
|
|
$for M in range(3 + 2 * ROW_TILE): |
|
float vi${M}x0 = 0.0f; |
|
|
|
$for M in range(3 + 2 * ROW_TILE): |
|
float vi${M}x1 = 0.0f; |
|
|
|
$for M in range(3 + 2 * ROW_TILE): |
|
float vi${M}x2 = *i${M}++; |
|
|
|
size_t w = input_width; |
|
for (; w > 2 * sizeof(float); w -= 2 * sizeof(float)) { |
|
$for M in range(3 + 2 * ROW_TILE): |
|
const float vi${M}x3 = i${M}[0]; |
|
|
|
$for M in range(3 + 2 * ROW_TILE): |
|
const float vi${M}x4 = i${M}[1]; |
|
i${M} += 2; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
$if K == 0: |
|
float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; |
|
$elif K < ACCUMULATORS: |
|
float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; |
|
$else: |
|
vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; |
|
|
|
$for M in range(3 + 2 * ROW_TILE): |
|
vi${M}x0 = vi${M}x2; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
$if K+5 < ACCUMULATORS: |
|
float vo${M}p${K+5} = vi${2*M+K}x1 * vk${K}1; |
|
$else: |
|
vo${M}p${(K+5) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; |
|
|
|
$for M in range(3 + 2 * ROW_TILE): |
|
vi${M}x1 = vi${M}x3; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
vo${M}p${(K+10) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2; |
|
|
|
$for M in range(3 + 2 * ROW_TILE): |
|
vi${M}x2 = vi${M}x4; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
vo${M}p${(K+15) % ACCUMULATORS} += vi${2*M+K}x3 * vk${K}3; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
vo${M}p${(K+20) % ACCUMULATORS} += vi${2*M+K}x4 * vk${K}4; |
|
|
|
$if ACCUMULATORS > 1: |
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for M in range(ROW_TILE): |
|
vo${M}p${A} += vo${M}p${A + ACC_SLICE}; |
|
$ACC_SLICE *= 2 |
|
|
|
$for M in range(ROW_TILE): |
|
float vo${M} = math_max_f32(vo${M}p0, vmin); |
|
|
|
$for M in range(ROW_TILE): |
|
vo${M} = math_min_f32(vo${M}, vmax); |
|
|
|
$for M in reversed(range(ROW_TILE)): |
|
*o${M}++ = vo${M}; |
|
} |
|
if XNN_LIKELY(w == 2 * sizeof(float)) { |
|
$for M in range(3 + 2 * ROW_TILE): |
|
const float vi${M}x3 = *i${M}++; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
$if K == 0: |
|
float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; |
|
$elif K < ACCUMULATORS: |
|
float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; |
|
$else: |
|
vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
$if K+5 < ACCUMULATORS: |
|
float vo${M}p${K+5} = vi${2*M+K}x1 * vk${K}1; |
|
$else: |
|
vo${M}p${(K+5) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
vo${M}p${(K+10) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
vo${M}p${(K+15) % ACCUMULATORS} += vi${2*M+K}x3 * vk${K}3; |
|
|
|
$if ACCUMULATORS > 1: |
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for M in range(ROW_TILE): |
|
vo${M}p${A} += vo${M}p${A + ACC_SLICE}; |
|
$ACC_SLICE *= 2 |
|
|
|
$for M in range(ROW_TILE): |
|
float vo${M} = math_max_f32(vo${M}p0, vmin); |
|
|
|
$for M in range(ROW_TILE): |
|
vo${M} = math_min_f32(vo${M}, vmax); |
|
|
|
$for M in reversed(range(ROW_TILE)): |
|
*o${M}++ = vo${M}; |
|
} else { |
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
$if K == 0: |
|
float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; |
|
$elif K < ACCUMULATORS: |
|
float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; |
|
$else: |
|
vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
$if K+5 < ACCUMULATORS: |
|
float vo${M}p${K+5} = vi${2*M+K}x1 * vk${K}1; |
|
$else: |
|
vo${M}p${(K+5) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; |
|
|
|
$for K in range(5): |
|
$for M in range(ROW_TILE): |
|
vo${M}p${(K+10) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2; |
|
|
|
$if ACCUMULATORS > 1: |
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for M in range(ROW_TILE): |
|
vo${M}p${A} += vo${M}p${A + ACC_SLICE}; |
|
$ACC_SLICE *= 2 |
|
|
|
$for M in range(ROW_TILE): |
|
float vo${M} = math_max_f32(vo${M}p0, vmin); |
|
|
|
$for M in range(ROW_TILE): |
|
vo${M} = math_min_f32(vo${M}, vmax); |
|
|
|
$for M in reversed(range(ROW_TILE)): |
|
*o${M}++ = vo${M}; |
|
} |
|
|
|
$if ROW_TILE == 1: |
|
i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE} - input_width); |
|
$else: |
|
i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE - 1}); |
|
i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE}); |
|
i2 = (const float*) ((uintptr_t) i${2 * ROW_TILE + 1}); |
|
i3 = (const float*) ((uintptr_t) i${2 * ROW_TILE + 2}); |
|
$for M in range(4, 3 + 2 * ROW_TILE): |
|
i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
|
|
|
$if ROW_TILE > 1: |
|
o0 = o${ROW_TILE - 1}; |
|
$for M in range(1, ROW_TILE): |
|
o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
|
|
|
$if ROW_TILE > 1: |
|
output_height = doz(output_height, ${ROW_TILE}); |
|
padded_input_height = doz(padded_input_height, ${ROW_TILE * 2}); |
|
$else: |
|
output_height -= 1; |
|
padded_input_height -= 2; |
|
} while (output_height != 0); |
|
} |
|
|