test / src /f16-dwconv /multipass-fma3.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
21.1 kB
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$CHANNEL_SUBTILE = 8
$assert CHANNEL_TILE % CHANNEL_SUBTILE == 0
$CHANNEL_ROUND = 4
$assert MIDDLE_PASS_TILE <= LAST_PASS_TILE
$assert FIRST_PASS_TILE >= 1
$assert MIDDLE_PASS_TILE >= 1
$assert LAST_PASS_TILE >= 1
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
void xnn_f16_dwconv_minmax_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__fma3${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const void** input,
const void* weights,
void* output,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const void* zero,
size_t kernel_size,
void* buffer,
const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
assert(kernel_size > ${FIRST_PASS_TILE});
const __m256 vmax = _mm256_load_ps(params->avx.max);
const __m256 vmin = _mm256_load_ps(params->avx.min);
do {
const uint16_t* w = weights;
// First pass to process ${FIRST_PASS_TILE} inputs.
{
uint16_t* b = buffer;
$for K in range(FIRST_PASS_TILE):
const uint16_t* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset);
}
input += ${FIRST_PASS_TILE};
// Process c channels and write to buffer.
size_t c = round_up_po2(channels, ${CHANNEL_ROUND});
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
$else:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${C})));
$for K in range(FIRST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K})));
$else:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C})));
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE + C})));
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT));
$else:
_mm_store_si128((__m128i*) (b + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT));
b += ${CHANNEL_TILE};
}
for (; c >= ${CHANNEL_SUBTILE}; c -= ${CHANNEL_SUBTILE}) {
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
$for K in range(FIRST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K})));
i${K} += ${CHANNEL_SUBTILE};
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_SUBTILE})));
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT));
b += ${CHANNEL_SUBTILE};
}
if (c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
$for K in range(FIRST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K}));
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_SUBTILE})));
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT));
}
}
// Middle pass to process ${MIDDLE_PASS_TILE} inputs in each iteration.
for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) {
uint16_t* b = buffer;
$for K in range(MIDDLE_PASS_TILE):
const uint16_t* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset);
}
input += ${MIDDLE_PASS_TILE};
size_t c = round_up_po2(channels, ${CHANNEL_ROUND});
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b)));
$else:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b + ${C})));
$for K in range(MIDDLE_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K})));
$else:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C})));
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
$if K == 0 and C == 0:
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w)));
$else:
const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_TILE + C})));
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
w += ${MIDDLE_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT));
$else:
_mm_store_si128((__m128i*) (b + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT));
b += ${CHANNEL_TILE};
}
for (; c >= 8; c -= 8) {
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b)));
$for K in range(MIDDLE_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K})));
i${K} += ${CHANNEL_SUBTILE};
$if K == 0:
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w)));
$else:
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_SUBTILE})));
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
w += ${MIDDLE_PASS_TILE * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT));
b += ${CHANNEL_SUBTILE};
}
if (c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b)));
$for K in range(MIDDLE_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K}));
$if K == 0:
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w)));
$else:
const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K) * CHANNEL_SUBTILE})));
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
w += ${(MIDDLE_PASS_TILE) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
_mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT));
}
}
// Last pass to process up to ${LAST_PASS_TILE} inputs.
{
uint16_t* b = buffer;
$for K in range(0, LAST_PASS_TILE):
const uint16_t* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset);
}
size_t c = channels;
$if CHANNEL_TILE > 8:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b)));
$else:
__m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b + ${C})));
b += ${CHANNEL_TILE};
$for K in range(LAST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K})));
$else:
const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C})));
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 8):
$if K == 0 and C == 0:
__m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w)));
$else:
__m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_TILE + C})));
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
__m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
__m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vacc${ABC[C:C+8]}p0, vmin);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_min_ps(vacc${ABC[C:C+8]}, vmax);
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
_mm_storeu_si128((__m128i*) output, _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT));
$else:
_mm_storeu_si128((__m128i*) ((uint16_t*) output + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT));
output = (uint16_t*) output + ${CHANNEL_TILE};
}
for (; c >= 8; c -= 8) {
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b)));
b += 8;
$for K in range(LAST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K})));
i${K} += 8;
$if K == 0:
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w)));
$else:
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * 8})));
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
$if CHANNEL_TILE > 8:
w += ${LAST_PASS_TILE * 8};
$else:
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
_mm_storeu_si128((__m128i*) output, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT));
output = (uint16_t*) output + 8;
}
if XNN_UNLIKELY(c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
__m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b)));
$for K in range(LAST_PASS_TILE):
const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K}));
$if K == 0:
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w)));
$else:
__m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * 8})));
$if 1 <= K < ACCUMULATORS:
__m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT));
$else:
vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT));
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:8]}p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT));
$ACC_SLICE *= 2
__m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin);
vacc01234567 = _mm256_min_ps(vacc01234567, vmax);
__m128i vh01234567 = _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT);
if (c & 4) {
_mm_storel_epi64((__m128i*) output, vh01234567);
vh01234567 = _mm_unpackhi_epi64(vh01234567, vh01234567);
output = (uint16_t*) output + 4;
}
if (c & 2) {
_mm_storeu_si32(output, vh01234567);
vh01234567 = _mm_srli_epi64(vh01234567, 32);
output = (uint16_t*) output + 2;
}
if (c & 1) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vh01234567, 0);
output = (uint16_t*) output + 1;
}
}
}
input = (const void**) (const uint16_t**) ((uintptr_t) input + input_stride);
output = (uint16_t*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}