|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <cfloat> |
|
#include <cmath> |
|
#include <functional> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <benchmark/benchmark.h> |
|
#include <fp16/fp16.h> |
|
#include "bench/conv.h" |
|
#include "bench/utils.h" |
|
|
|
#include <xnnpack.h> |
|
#include <xnnpack/aligned-allocator.h> |
|
#include <xnnpack/common.h> |
|
#include <xnnpack/igemm.h> |
|
#include <xnnpack/indirection.h> |
|
#include <xnnpack/microfnptr.h> |
|
#include <xnnpack/microparams-init.h> |
|
#include <xnnpack/operator.h> |
|
#include <xnnpack/pack.h> |
|
|
|
|
|
static void f16_igemm(benchmark::State& state, |
|
xnn_f16_igemm_minmax_ukernel_fn igemm, |
|
xnn_init_f16_minmax_params_fn init_params, |
|
uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr, |
|
benchmark::utils::IsaCheckFunction isa_check = nullptr) |
|
{ |
|
if (isa_check != nullptr && !isa_check(state)) { |
|
return; |
|
} |
|
|
|
const size_t input_height = state.range(0); |
|
const size_t input_width = state.range(1); |
|
const size_t kernel_height = state.range(2); |
|
const size_t kernel_width = state.range(3); |
|
const size_t kernel_size = kernel_height * kernel_width; |
|
const size_t padding_height = state.range(4); |
|
const size_t padding_width = state.range(5); |
|
const size_t subsampling = state.range(6); |
|
const size_t dilation = state.range(7); |
|
const size_t group_input_channels = state.range(8); |
|
const size_t group_output_channels = state.range(9); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
|
|
|
const size_t output_pixel_stride = group_output_channels; |
|
const size_t input_pixel_stride = group_input_channels; |
|
const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
|
const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
|
const size_t padding_left = padding_width / 2; |
|
const size_t padding_top = padding_height / 2; |
|
const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
|
const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
|
const size_t output_size = output_height * output_width; |
|
|
|
const size_t mc_stride = benchmark::utils::RoundUp<size_t>(output_size, mr); |
|
const size_t nc_stride = benchmark::utils::RoundUp<size_t>(group_output_channels, nr); |
|
const size_t kc_stride = benchmark::utils::RoundUp<size_t>(group_input_channels, kr * sr); |
|
|
|
std::vector<uint16_t> a(input_height * input_width * input_pixel_stride + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
|
std::generate(a.begin(), a.end(), std::ref(f16rng)); |
|
std::vector<uint16_t> k(group_output_channels * kernel_height * kernel_width * group_input_channels); |
|
std::generate(k.begin(), k.end(), std::ref(f16rng)); |
|
std::vector<uint16_t> b(group_output_channels); |
|
std::generate(b.begin(), b.end(), std::ref(f16rng)); |
|
|
|
std::vector<uint16_t> z(group_input_channels + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
|
|
|
const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride; |
|
const size_t i_elements = mc_stride * kernel_size; |
|
const size_t c_elements = output_height * output_width * output_pixel_stride; |
|
const size_t num_buffers = 1 + |
|
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
|
sizeof(uint16_t) * (w_elements + c_elements) + sizeof(void*) * i_elements); |
|
|
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(w_elements * num_buffers); |
|
std::fill(w.begin(), w.end(), 0); |
|
xnn_pack_f16_conv_goki_w( |
|
1 , group_output_channels, kernel_size, group_input_channels, |
|
nr, kr, sr, k.data(), b.data(), w.data(), 0 , nullptr); |
|
for (size_t n = 1; n < num_buffers; n++) { |
|
std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements); |
|
} |
|
|
|
std::vector<const uint16_t*> i(i_elements * num_buffers); |
|
xnn_operator convolution_op = { }; |
|
convolution_op.indirection_buffer = reinterpret_cast<const void**>(i.data()); |
|
convolution_op.input = a.data(); |
|
convolution_op.input_pixel_stride = input_pixel_stride; |
|
convolution_op.zero_buffer = z.data(); |
|
convolution_op.groups = 1; |
|
convolution_op.group_input_channels = group_input_channels; |
|
convolution_op.batch_size = 1; |
|
convolution_op.input_height = input_height; |
|
convolution_op.input_width = input_width; |
|
convolution_op.output_height = output_height; |
|
convolution_op.output_width = output_width; |
|
convolution_op.kernel_height = kernel_height; |
|
convolution_op.kernel_width = kernel_width; |
|
convolution_op.stride_height = subsampling; |
|
convolution_op.stride_width = subsampling; |
|
convolution_op.dilation_height = dilation; |
|
convolution_op.dilation_width = dilation; |
|
convolution_op.padding_top = padding_top; |
|
convolution_op.padding_left = padding_left; |
|
xnn_indirection_init_conv2d(&convolution_op, mr, XNN_LOG2_SIZEOF_HALF); |
|
for (size_t n = 1; n < num_buffers; n++) { |
|
std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements); |
|
} |
|
|
|
std::vector<uint16_t> c(c_elements * num_buffers); |
|
std::fill(c.begin(), c.end(), UINT16_C(0x7E00) ); |
|
|
|
|
|
xnn_f16_minmax_params params; |
|
init_params(¶ms, UINT16_C(0xFC00) , UINT16_C(0x7C00) ); |
|
|
|
size_t buffer_index = 0; |
|
for (auto _ : state) { |
|
state.PauseTiming(); |
|
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t)); |
|
buffer_index = (buffer_index + 1) % num_buffers; |
|
state.ResumeTiming(); |
|
|
|
for (uint32_t m = 0; m < output_size; m += mr) { |
|
const uint32_t mb = min(output_size - m, mr); |
|
for (uint32_t n = 0; n < group_output_channels; n += nr) { |
|
const uint32_t nb = min(group_output_channels - n, nr); |
|
igemm( |
|
mb, nb, group_input_channels * sizeof(uint16_t), kernel_size * mr * sizeof(void*), |
|
reinterpret_cast<const void**>(i.data()) + buffer_index * i_elements + m, |
|
w.data() + buffer_index * w_elements + n * (kc_stride * kernel_size + 1), |
|
c.data() + buffer_index * c_elements + m * group_output_channels + n, group_output_channels * sizeof(uint16_t), nr * sizeof(uint16_t), |
|
0, z.data(), ¶ms); |
|
} |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["FLOPS"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * 2 * |
|
output_height * output_width * |
|
group_input_channels * group_output_channels * |
|
kernel_height * kernel_width, |
|
benchmark::Counter::kIsRate); |
|
} |
|
|
|
#if XNN_PLATFORM_JIT |
|
static void f16_igemm(benchmark::State& state, |
|
xnn_jit_igemm_code_generator_fn generator, |
|
xnn_init_f16_minmax_params_fn init_params, |
|
uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr, |
|
benchmark::utils::IsaCheckFunction isa_check = nullptr) |
|
{ |
|
if (isa_check != nullptr && !isa_check(state)) { |
|
return; |
|
} |
|
|
|
const size_t input_height = state.range(0); |
|
const size_t input_width = state.range(1); |
|
const size_t kernel_height = state.range(2); |
|
const size_t kernel_width = state.range(3); |
|
const size_t kernel_size = kernel_height * kernel_width; |
|
const size_t padding_height = state.range(4); |
|
const size_t padding_width = state.range(5); |
|
const size_t subsampling = state.range(6); |
|
const size_t dilation = state.range(7); |
|
const size_t group_input_channels = state.range(8); |
|
const size_t group_output_channels = state.range(9); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
|
|
|
const size_t output_pixel_stride = group_output_channels; |
|
const size_t input_pixel_stride = group_input_channels; |
|
const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
|
const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
|
const size_t padding_left = padding_width / 2; |
|
const size_t padding_top = padding_height / 2; |
|
const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
|
const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
|
const size_t output_size = output_height * output_width; |
|
|
|
const size_t mc_stride = benchmark::utils::RoundUp<size_t>(output_size, mr); |
|
const size_t nc_stride = benchmark::utils::RoundUp<size_t>(group_output_channels, nr); |
|
const size_t kc_stride = benchmark::utils::RoundUp<size_t>(group_input_channels, kr * sr); |
|
|
|
std::vector<uint16_t> a(input_height * input_width * input_pixel_stride + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
|
std::generate(a.begin(), a.end(), std::ref(f16rng)); |
|
std::vector<uint16_t> k(group_output_channels * kernel_height * kernel_width * group_input_channels); |
|
std::generate(k.begin(), k.end(), std::ref(f16rng)); |
|
std::vector<uint16_t> b(group_output_channels); |
|
std::generate(b.begin(), b.end(), std::ref(f16rng)); |
|
|
|
std::vector<uint16_t> z(group_input_channels + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
|
|
|
const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride; |
|
const size_t i_elements = mc_stride * kernel_size; |
|
const size_t c_elements = output_height * output_width * output_pixel_stride; |
|
const size_t num_buffers = 1 + |
|
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
|
sizeof(uint16_t) * (w_elements + c_elements) + sizeof(void*) * i_elements); |
|
|
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(w_elements * num_buffers); |
|
std::fill(w.begin(), w.end(), 0); |
|
xnn_pack_f16_conv_goki_w( |
|
1 , group_output_channels, kernel_size, group_input_channels, |
|
nr, kr, sr, k.data(), b.data(), w.data(), 0 , nullptr); |
|
for (size_t n = 1; n < num_buffers; n++) { |
|
std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements); |
|
} |
|
|
|
std::vector<const uint16_t*> i(i_elements * num_buffers); |
|
xnn_operator convolution_op = { }; |
|
convolution_op.indirection_buffer = reinterpret_cast<const void**>(i.data()); |
|
convolution_op.input = a.data(); |
|
convolution_op.input_pixel_stride = input_pixel_stride; |
|
convolution_op.zero_buffer = z.data(); |
|
convolution_op.groups = 1; |
|
convolution_op.group_input_channels = group_input_channels; |
|
convolution_op.batch_size = 1; |
|
convolution_op.input_height = input_height; |
|
convolution_op.input_width = input_width; |
|
convolution_op.output_height = output_height; |
|
convolution_op.output_width = output_width; |
|
convolution_op.kernel_height = kernel_height; |
|
convolution_op.kernel_width = kernel_width; |
|
convolution_op.stride_height = subsampling; |
|
convolution_op.stride_width = subsampling; |
|
convolution_op.dilation_height = dilation; |
|
convolution_op.dilation_width = dilation; |
|
convolution_op.padding_top = padding_top; |
|
convolution_op.padding_left = padding_left; |
|
xnn_indirection_init_conv2d(&convolution_op, mr, XNN_LOG2_SIZEOF_HALF); |
|
for (size_t n = 1; n < num_buffers; n++) { |
|
std::copy(i.cbegin(), i.cbegin() + i_elements, i.begin() + n * i_elements); |
|
} |
|
|
|
std::vector<uint16_t> c(c_elements * num_buffers); |
|
std::fill(c.begin(), c.end(), UINT16_C(0x7E00) ); |
|
|
|
|
|
xnn_f16_minmax_params params; |
|
init_params(¶ms, UINT16_C(0xFC00) , UINT16_C(0x7C00) ); |
|
|
|
jit_gemm_params jit_params = {}; |
|
jit_params.f16_minmax.min = UINT16_C(0xFC00); |
|
jit_params.f16_minmax.max = UINT16_C(0x7C00); |
|
|
|
xnn_code_buffer code_buffer; |
|
xnn_allocate_code_memory(&code_buffer, XNN_DEFAULT_CODE_BUFFER_SIZE); |
|
generator(&code_buffer, |
|
mr, |
|
group_output_channels % nr, |
|
group_input_channels * sizeof(uint16_t), |
|
kernel_size * mr * sizeof(void *), |
|
&jit_params); |
|
xnn_finalize_code_memory(&code_buffer); |
|
auto igemm = reinterpret_cast<xnn_f16_igemm_minmax_ukernel_fn>(code_buffer.start); |
|
|
|
size_t buffer_index = 0; |
|
for (auto _ : state) { |
|
state.PauseTiming(); |
|
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t)); |
|
buffer_index = (buffer_index + 1) % num_buffers; |
|
state.ResumeTiming(); |
|
|
|
for (uint32_t m = 0; m < output_size; m += mr) { |
|
const uint32_t mb = min(output_size - m, mr); |
|
for (uint32_t n = 0; n < group_output_channels; n += nr) { |
|
const uint32_t nb = min(group_output_channels - n, nr); |
|
igemm( |
|
mb, nb, group_input_channels * sizeof(uint16_t), kernel_size * mr * sizeof(void*), |
|
reinterpret_cast<const void**>(i.data()) + buffer_index * i_elements + m, |
|
w.data() + buffer_index * w_elements + n * (kc_stride * kernel_size + 1), |
|
c.data() + buffer_index * c_elements + m * group_output_channels + n, group_output_channels * sizeof(uint16_t), nr * sizeof(uint16_t), |
|
0, z.data(), ¶ms); |
|
} |
|
} |
|
} |
|
xnn_release_code_memory(&code_buffer); |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["FLOPS"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * 2 * |
|
output_height * output_width * |
|
group_input_channels * group_output_channels * |
|
kernel_height * kernel_width, |
|
benchmark::Counter::kIsRate); |
|
} |
|
#endif |
|
|
|
#if XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY |
|
static void f16_igemm_6x16__asm_aarch64_neonfp16arith_cortex_a55(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_6x16__asm_aarch64_neonfp16arith_cortex_a55, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16__asm_aarch64_neonfp16arith_cortex_a55r0(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_6x16__asm_aarch64_neonfp16arith_cortex_a55r0, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16__asm_aarch64_neonfp16arith_cortex_a75(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_6x16__asm_aarch64_neonfp16arith_cortex_a75, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16__asm_aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_6x16__asm_aarch64_neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_4x16__asm_aarch64_neonfp16arith_ld32(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_4x16__asm_aarch64_neonfp16arith_ld32, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
4, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_4x16__asm_aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_4x16__asm_aarch64_neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
4, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_1x16__asm_aarch64_neonfp16arith_ld32(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_1x16__asm_aarch64_neonfp16arith_ld32, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
1, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_1x16__asm_aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_1x16__asm_aarch64_neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
1, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
|
|
BENCHMARK_CONV(f16_igemm_6x16__asm_aarch64_neonfp16arith_cortex_a55) |
|
BENCHMARK_CONV(f16_igemm_6x16__asm_aarch64_neonfp16arith_cortex_a55r0) |
|
BENCHMARK_CONV(f16_igemm_6x16__asm_aarch64_neonfp16arith_cortex_a75) |
|
BENCHMARK_CONV(f16_igemm_6x16__asm_aarch64_neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_4x16__asm_aarch64_neonfp16arith_ld32) |
|
BENCHMARK_CONV(f16_igemm_4x16__asm_aarch64_neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_1x16__asm_aarch64_neonfp16arith_ld32) |
|
BENCHMARK_CONV(f16_igemm_1x16__asm_aarch64_neonfp16arith_ld64) |
|
#endif |
|
|
|
#if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64) |
|
static void f16_igemm_1x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_1x8__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
1, 8, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_4x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_4x8__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
4, 8, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_6x8__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 8, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_8x8__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_8x8__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
8, 8, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_1x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_1x16__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
1, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_4x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_4x16__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
4, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_6x16__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_8x16__neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_8x16__neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
8, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
|
|
BENCHMARK_CONV(f16_igemm_1x8__neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_4x8__neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_6x8__neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_8x8__neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_1x16__neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_4x16__neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_6x16__neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_8x16__neonfp16arith_ld64) |
|
#endif |
|
|
|
#if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
|
static void f16_igemm_1x8__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_1x8__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
1, 8, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_4x8__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_4x8__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
4, 8, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_5x8__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_5x8__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
5, 8, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_6x8__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_6x8__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
6, 8, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_7x8__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_7x8__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
7, 8, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_1x16__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_1x16__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
1, 16, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_3x16__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_3x16__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
3, 16, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_4x16__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_4x16__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
4, 16, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
static void f16_igemm_5x16__avx2_broadcast(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_f16_igemm_minmax_ukernel_5x16__avx2_broadcast, |
|
xnn_init_f16_minmax_avx_params, |
|
5, 16, 1, 1, |
|
benchmark::utils::CheckAVX2); |
|
} |
|
|
|
BENCHMARK_CONV(f16_igemm_1x8__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_4x8__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_5x8__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_6x8__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_7x8__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_1x16__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_3x16__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_4x16__avx2_broadcast) |
|
BENCHMARK_CONV(f16_igemm_5x16__avx2_broadcast) |
|
#endif |
|
|
|
#if XNN_ARCH_ARM64 && XNN_PLATFORM_JIT |
|
static void f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_cortex_a55(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_generate_f16_igemm_ukernel_6x16__aarch64_neonfp16arith_cortex_a55, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_cortex_a55r0(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_generate_f16_igemm_ukernel_6x16__aarch64_neonfp16arith_cortex_a55r0, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16_5x16__jit_aarch64_neonfp16arith_cortex_a55r0(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_generate_f16_igemm_ukernel_6x16__aarch64_neonfp16arith_cortex_a55r0, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
5, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_cortex_a75(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_generate_f16_igemm_ukernel_6x16__aarch64_neonfp16arith_cortex_a75, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_generate_f16_igemm_ukernel_6x16__aarch64_neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
6, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_4x16_4x16__jit_aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_generate_f16_igemm_ukernel_4x16__aarch64_neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
4, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void f16_igemm_1x16_1x16__jit_aarch64_neonfp16arith_ld64(benchmark::State& state, const char* net) { |
|
f16_igemm(state, |
|
xnn_generate_f16_igemm_ukernel_1x16__aarch64_neonfp16arith_ld64, |
|
xnn_init_f16_minmax_fp16arith_params, |
|
1, 16, 1, 1, |
|
benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
|
|
BENCHMARK_CONV(f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_cortex_a55) |
|
BENCHMARK_CONV(f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_cortex_a55) |
|
BENCHMARK_CONV(f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_cortex_a55r0) |
|
BENCHMARK_CONV(f16_igemm_6x16_5x16__jit_aarch64_neonfp16arith_cortex_a55r0) |
|
BENCHMARK_CONV(f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_cortex_a75) |
|
BENCHMARK_CONV(f16_igemm_6x16_6x16__jit_aarch64_neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_4x16_4x16__jit_aarch64_neonfp16arith_ld64) |
|
BENCHMARK_CONV(f16_igemm_1x16_1x16__jit_aarch64_neonfp16arith_ld64) |
|
#endif |
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN |
|
BENCHMARK_MAIN(); |
|
#endif |
|
|