|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <functional> |
|
#include <memory> |
|
#include <random> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include <xnnpack.h> |
|
|
|
#include <benchmark/benchmark.h> |
|
#include "bench/utils.h" |
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
#include "flatbuffers/include/flatbuffers/flatbuffers.h" |
|
#include "tensorflow/lite/interpreter.h" |
|
#include "tensorflow/lite/kernels/register.h" |
|
#include "tensorflow/lite/schema/schema_generated.h" |
|
#include "tensorflow/lite/version.h" |
|
#endif |
|
|
|
void xnnpack_batch_matrix_multiply_f32(benchmark::State& state, const char* net) { |
|
const size_t batch_size = state.range(0); |
|
const size_t m = state.range(1); |
|
const size_t k = state.range(1); |
|
const size_t n = state.range(1); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
|
|
|
std::vector<float> input1(batch_size * m * k); |
|
std::generate(input1.begin(), input1.end(), std::ref(f32rng)); |
|
std::vector<float> input2(batch_size * k * n); |
|
std::generate(input2.begin(), input2.end(), std::ref(f32rng)); |
|
const size_t output_elements = batch_size * m * n; |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
const size_t num_buffers = |
|
1 + benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), sizeof(float) * (output_elements)); |
|
std::vector<float> output(output_elements * num_buffers); |
|
|
|
std::vector<xnn_operator_t> ops(num_buffers); |
|
|
|
for (xnn_operator_t& op : ops) { |
|
status = xnn_create_batch_matrix_multiply_nc_f32(0, &op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create FP32 Convolution operator"); |
|
return; |
|
} |
|
} |
|
|
|
std::vector<std::unique_ptr<std::vector<char>>> workspaces; |
|
|
|
for (xnn_operator_t& op : ops) { |
|
size_t workspace_size = 0; |
|
size_t workspace_alignment = 0; |
|
status = |
|
xnn_reshape_batch_matrix_multiply_nc_f32(op, batch_size, m, k, n, &workspace_size, &workspace_alignment, nullptr); |
|
|
|
auto workspace = std::make_unique<std::vector<char>>(workspace_size); |
|
char* workspace_ptr = workspace->data(); |
|
|
|
workspaces.push_back(std::move(workspace)); |
|
|
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create FP32 Convolution operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_batch_matrix_multiply_nc_f32(op, workspace_ptr, input1.data(), input2.data(), output.data()); |
|
} |
|
|
|
size_t buffer_index = 0; |
|
for (auto _ : state) { |
|
state.PauseTiming(); |
|
buffer_index = (buffer_index + 1) % num_buffers; |
|
state.ResumeTiming(); |
|
|
|
status = xnn_run_operator(ops[buffer_index], nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run FP32 Convolution operator"); |
|
return; |
|
} |
|
} |
|
|
|
for (xnn_operator_t& convolution_op : ops) { |
|
status = xnn_delete_operator(convolution_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete FP32 Convolution operator"); |
|
return; |
|
} |
|
convolution_op = nullptr; |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["FLOPS"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * batch_size * m * k * n, |
|
benchmark::Counter::kIsRate); |
|
} |
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
void tflite_batch_matrix_multiply_f32(benchmark::State& state, const char* net) { |
|
const size_t batch_size = state.range(0); |
|
const size_t m = state.range(1); |
|
const size_t k = state.range(1); |
|
const size_t n = state.range(1); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
|
|
|
std::vector<float> input1(batch_size * m * k); |
|
std::generate(input1.begin(), input1.end(), std::ref(f32rng)); |
|
std::vector<float> input2(batch_size * k * n); |
|
std::generate(input2.begin(), input2.end(), std::ref(f32rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_BATCH_MATMUL, 0); |
|
|
|
flatbuffers::Offset<tflite::BatchMatMulOptions> batch_mat_mul_options = |
|
tflite::CreateBatchMatMulOptions(builder, false, false, false); |
|
|
|
flatbuffers::Offset<tflite::Buffer> buffers[1] = { |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}; |
|
|
|
const int32_t input1_shape[3] = { |
|
static_cast<int32_t>(batch_size), |
|
static_cast<int32_t>(m), |
|
static_cast<int32_t>(k), |
|
}; |
|
const int32_t input2_shape[3] = { |
|
static_cast<int32_t>(batch_size), |
|
static_cast<int32_t>(k), |
|
static_cast<int32_t>(n), |
|
}; |
|
const int32_t output_shape[3] = { |
|
static_cast<int32_t>(batch_size), |
|
static_cast<int32_t>(m), |
|
static_cast<int32_t>(n), |
|
}; |
|
|
|
flatbuffers::Offset<tflite::Tensor> tensors[4] = { |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(input1_shape, 3), |
|
tflite::TensorType_FLOAT32, |
|
0 , |
|
builder.CreateString("input1")), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(input2_shape, 3), |
|
tflite::TensorType_FLOAT32, |
|
0 , |
|
builder.CreateString("input2")), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(output_shape, 2), |
|
tflite::TensorType_FLOAT32, |
|
0 , |
|
builder.CreateString("output")), |
|
}; |
|
|
|
const int32_t op_inputs[2] = { 0, 1 }; |
|
const int32_t op_outputs[1] = { 2 }; |
|
flatbuffers::Offset<tflite::Operator> op = CreateOperator( |
|
builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs, 2), |
|
builder.CreateVector<int32_t>(op_outputs, 1), |
|
tflite::BuiltinOptions_BatchMatMulOptions, |
|
batch_mat_mul_options.Union()); |
|
|
|
const int32_t graph_inputs[2] = { 0, 1 }; |
|
const int32_t graph_outputs[1] = { 2 }; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors, 3), |
|
builder.CreateVector<int32_t>(graph_inputs, 2), |
|
builder.CreateVector<int32_t>(graph_outputs, 1), |
|
builder.CreateVector(&op, 1), |
|
builder.CreateString("BatchMatMul subgraph")); |
|
|
|
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("BatchMatMul model"); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
description, |
|
builder.CreateVector(buffers, 1)); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
if (interpreter == nullptr) { |
|
state.SkipWithError("TFLite interpreter is null"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate( |
|
interpreter->typed_tensor<float>(0), |
|
interpreter->typed_tensor<float>(0) + batch_size * m * k, |
|
std::ref(f32rng)); |
|
|
|
std::generate( |
|
interpreter->typed_tensor<float>(1), |
|
interpreter->typed_tensor<float>(1) + batch_size * k * n, |
|
std::ref(f32rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["FLOPS"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * batch_size * m * k * n, |
|
benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
#endif |
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN |
|
BENCHMARK_MAIN(); |
|
#endif |
|
|