|
|
|
|
|
|
|
|
|
|
|
$assert DATATYPE in ["F32", "QC4", "QC8"] |
|
$if DATATYPE == "QC8" and SSE == 2: |
|
$assert NR % 8 == 0 |
|
$elif DATATYPE == "QC4": |
|
$assert NR == 8 |
|
$else: |
|
$assert NR % 4 == 0 |
|
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
$SSE_HEADER = "immintrin.h" if AVX else {1: "immintrin.h", 2: "emmintrin.h", 4: "smmintrin.h"}[SSE] |
|
|
|
|
|
|
|
|
|
|
|
$if DATATYPE == "QC8" and SSE == 4: |
|
|
|
|
|
|
|
$ISA = {0: "avx", 3: "fma3"}[FMA] if AVX else {1: "sse", 2: "sse2", 4: "sse41"}[SSE] |
|
$DATATYPE_SPEC = {"F32": "f32", "QC8": "f32_qc8w", "QC4": "f32_qc4w"}[DATATYPE] |
|
void xnn_${DATATYPE_SPEC}_gemm${"inc" if INC else ""}_minmax_ukernel_${MR}x${NR}__${ISA}_dup( |
|
size_t mr, |
|
size_t nc, |
|
size_t kc, |
|
const float* restrict a, |
|
size_t a_stride, |
|
$if DATATYPE == "F32": |
|
const float* restrict w, |
|
$else: |
|
const void* restrict w, |
|
float* restrict c, |
|
size_t cm_stride, |
|
size_t cn_stride, |
|
$if INC: |
|
const float* restrict acc, |
|
$if DATATYPE == "QC4": |
|
const union xnn_f32_qc4w_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
$else: |
|
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(mr != 0); |
|
assert(mr <= ${MR}); |
|
assert(nc != 0); |
|
assert(kc != 0); |
|
assert(kc % sizeof(float) == 0); |
|
assert(a != NULL); |
|
assert(w != NULL); |
|
assert(c != NULL); |
|
$if INC: |
|
assert(acc != NULL); |
|
|
|
const float* a0 = a; |
|
float* c0 = c; |
|
$for M in range(1, MR): |
|
const float* a${M} = (const float*) ((uintptr_t) a${M-1} + a_stride); |
|
float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride); |
|
$if M % 2 == 0: |
|
if XNN_UNPREDICTABLE(mr <= ${M}) { |
|
a${M} = a${M-1}; |
|
c${M} = c${M-1}; |
|
} |
|
$elif M + 1 == MR: |
|
if XNN_UNPREDICTABLE(mr != ${M+1}) { |
|
a${M} = a${M-1}; |
|
c${M} = c${M-1}; |
|
} |
|
$else: |
|
if XNN_UNPREDICTABLE(mr < ${M+1}) { |
|
a${M} = a${M-1}; |
|
c${M} = c${M-1}; |
|
} |
|
$if DATATYPE == "QC4": |
|
const __m128i vminus_kernel_zero_point = _mm_load_si128((const __m128i *) params->sse.minus_kernel_zero_point); |
|
const __m128i vmask = _mm_load_si128((const __m128i *) params->sse.mask); |
|
|
|
do { |
|
$if INC: |
|
$for M in range(MR): |
|
$for N in range(0, NR, 4): |
|
__m128 vacc${M}x${ABC[N:N+4]} = _mm_load_ps(acc + ${M*NR+N}); |
|
acc += ${MR*NR}; |
|
$else: |
|
$for N in range(0, NR, 4): |
|
$if DATATYPE == "F32": |
|
__m128 vacc0x${ABC[N:N+4]} = _mm_load_ps(w + ${N}); |
|
$else: |
|
__m128 vacc0x${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N}); |
|
$for M in range(1, MR): |
|
$for N in range(0, NR, 4): |
|
__m128 vacc${M}x${ABC[N:N+4]} = vacc0x${ABC[N:N+4]}; |
|
$if DATATYPE == "F32": |
|
w += ${NR}; |
|
$else: |
|
w = (const float*) w + ${NR}; |
|
|
|
size_t k = kc; |
|
for (; k >= 4 * sizeof(float); k -= 4 * sizeof(float)) { |
|
$for M in range(MR): |
|
const __m128 va${M} = _mm_loadu_ps(a${M}); |
|
a${M} += 4; |
|
|
|
$for L in range(4): |
|
$LLLL = str(L) * 4 |
|
|
|
$for M in range(MR): |
|
$if SSE >= 2 and L < 3: |
|
const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}))); |
|
$elif AVX >= 1: |
|
const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); |
|
$else: |
|
const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); |
|
|
|
$if DATATYPE == "F32": |
|
$for N in range(0, NR, 4): |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N}); |
|
$elif DATATYPE == "QC4": |
|
$if L % 4 == 0: |
|
$if SSE >= 4: |
|
$for N in range(0, NR, 8): |
|
const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}))); |
|
const __m128i vbwi${ABC[N:N+8]}c23 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2 + 8}))); |
|
$for N in range(0, NR, 8): |
|
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); |
|
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4); |
|
__m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask); |
|
__m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 4); |
|
$else: |
|
$for N in range(0, NR, 8): |
|
__m128i vbi${ABC[N:N+8]}c0123 = _mm_loadu_si128((const __m128i *) ((const int8_t*) w + ${N * 2})); |
|
$for N in range(0, NR, 8): |
|
__m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123); |
|
__m128i vbwi${ABC[N:N+8]}c23 = _mm_unpackhi_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123); |
|
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); |
|
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12); |
|
__m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask); |
|
__m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 12); |
|
$for N in range(0, NR, 8): |
|
$if SSE >= 4: |
|
__m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L}); |
|
$else: |
|
__m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); |
|
__m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); |
|
vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point); |
|
vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point); |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); |
|
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L}); |
|
$elif DATATYPE == "QC8": |
|
$if SSE >= 4: |
|
$for N in range(0, NR, 4): |
|
const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N}))); |
|
$for N in range(0, NR, 4): |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); |
|
$else: |
|
$for N in range(0, NR, 8): |
|
const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N})); |
|
$for N in range(0, NR, 8): |
|
const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L}); |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); |
|
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); |
|
|
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
$if FMA == 3: |
|
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]}); |
|
$else: |
|
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L})); |
|
|
|
|
|
$if DATATYPE == "F32": |
|
w += ${NR * 4}; |
|
$elif DATATYPE == "QC4": |
|
w = (const int8_t*) w + ${NR * 4 |
|
$else: |
|
w = (const int8_t*) w + ${NR * 4}; |
|
} |
|
if XNN_UNLIKELY(k >= 2 * sizeof(float)) { |
|
$for M in range(MR): |
|
$if SSE >= 2: |
|
const __m128 va${M} = _mm_castsi128_ps(_mm_loadl_epi64((const __m128i *) a${M})); |
|
$else: |
|
const __m128 va${M} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) a${M}); |
|
a${M} += 2; |
|
$for L in range(2): |
|
$LLLL = str(L) * 4 |
|
|
|
$for M in range(MR): |
|
$if SSE >= 2 and L < 3: |
|
const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}))); |
|
$elif AVX >= 1: |
|
const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); |
|
$else: |
|
const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); |
|
|
|
$if DATATYPE == "F32": |
|
$for N in range(0, NR, 4): |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N}); |
|
$elif DATATYPE == "QC4": |
|
$if L % 2 == 0: |
|
$if SSE >= 4: |
|
$for N in range(0, NR, 8): |
|
const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}))); |
|
$for N in range(0, NR, 8): |
|
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); |
|
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4); |
|
$else: |
|
$for N in range(0, NR, 8): |
|
__m128i vbi${ABC[N:N+8]}c01 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})); |
|
$for N in range(0, NR, 8): |
|
__m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c01, vbi${ABC[N:N+8]}c01); |
|
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); |
|
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12); |
|
$for N in range(0, NR, 8): |
|
$if SSE >= 4: |
|
__m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L}); |
|
$else: |
|
__m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); |
|
__m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); |
|
vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point); |
|
vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point); |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); |
|
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L}); |
|
$elif DATATYPE == "QC8": |
|
$if SSE >= 4: |
|
$for N in range(0, NR, 4): |
|
const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N}))); |
|
$for N in range(0, NR, 4): |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); |
|
$else: |
|
$for N in range(0, NR, 8): |
|
const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N})); |
|
$for N in range(0, NR, 8): |
|
const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L}); |
|
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); |
|
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); |
|
|
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
$if FMA == 3: |
|
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]}); |
|
$else: |
|
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L})); |
|
|
|
$if DATATYPE == "F32": |
|
w += ${NR * 2}; |
|
$elif DATATYPE == "QC4": |
|
w = (const int8_t*) w + ${NR * 2 |
|
$else: |
|
w = (const int8_t*) w + ${NR * 2}; |
|
k -= 2 * sizeof(float); |
|
} |
|
if XNN_UNLIKELY(k != 0) { |
|
$for M in range(MR): |
|
const __m128 va${M} = _mm_load1_ps(a${M}); |
|
a${M} += 1; |
|
|
|
$if DATATYPE == "F32": |
|
const __m128 vb${ABC[0:4]} = _mm_load_ps(w); |
|
$for N in range(4, NR, 4): |
|
const __m128 vb${ABC[N:N+4]} = _mm_load_ps(w + ${N}); |
|
w += ${NR}; |
|
$elif DATATYPE == "QC4": |
|
$if SSE >= 4: |
|
$for N in range(0, NR, 8): |
|
const __m128i vbwi${ABC[N:N+8]}c0 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}))); |
|
$for N in range(0, NR, 8): |
|
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask); |
|
$else: |
|
$for N in range(0, NR, 8): |
|
__m128i vbi${ABC[N:N+8]}c0 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})); |
|
$for N in range(0, NR, 8): |
|
__m128i vbwi${ABC[N:N+8]}c0 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0, vbi${ABC[N:N+8]}c0); |
|
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask); |
|
$for N in range(0, NR, 8): |
|
$if SSE >= 4: |
|
__m128i vbi${ABC[N:N+4]}c0 = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c0); |
|
$else: |
|
__m128i vbi${ABC[N:N+4]}c0 = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128()); |
|
__m128i vbi${ABC[N+4:N+8]}c0 = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128()); |
|
vbi${ABC[N:N+4]}c0 = _mm_add_epi32(vbi${ABC[N:N+4]}c0, vminus_kernel_zero_point); |
|
vbi${ABC[N+4:N+8]}c0 = _mm_add_epi32(vbi${ABC[N+4:N+8]}c0, vminus_kernel_zero_point); |
|
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c0); |
|
const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c0); |
|
w = (const int8_t*) w + ${NR}; |
|
$elif DATATYPE == "QC8": |
|
$if SSE >= 4: |
|
const __m128i vbi${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const void*) w))); |
|
$for N in range(4, NR, 4): |
|
const __m128i vbi${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${N}))); |
|
$for N in range(0, NR, 4): |
|
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}); |
|
$else: |
|
$for N in range(0, NR, 8): |
|
const __m128i vb${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N})); |
|
$for N in range(0, NR, 8): |
|
const __m128i vbw${ABC[N:N+8]} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}, vb${ABC[N:N+8]}); |
|
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24)); |
|
const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24)); |
|
w = (const int8_t*) w + ${NR}; |
|
|
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
$if FMA == 3: |
|
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}, vb${ABC[N:N+4]}, vacc${M}x${ABC[N:N+4]}); |
|
$else: |
|
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}, vb${ABC[N:N+4]})); |
|
|
|
k -= sizeof(float); |
|
} |
|
|
|
$if DATATYPE in ["QC8", "QC4"]: |
|
$for N in range(0, NR, 4): |
|
const __m128 vscale${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N}); |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N:N+4]} = _mm_mul_ps(vacc${M}x${ABC[N:N+4]}, vscale${ABC[N:N+4]}); |
|
w = (const float*) w + ${NR}; |
|
const __m128 vmax = _mm_load_ps(params->sse.max); |
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N:N+4]} = _mm_min_ps(vacc${M}x${ABC[N:N+4]}, vmax); |
|
|
|
const __m128 vmin = _mm_load_ps(params->sse.min); |
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N:N+4]} = _mm_max_ps(vacc${M}x${ABC[N:N+4]}, vmin); |
|
|
|
if XNN_LIKELY(nc >= ${NR}) { |
|
$for M in reversed(range(MR)): |
|
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]}); |
|
$for N in range(4, NR, 4): |
|
_mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]}); |
|
c${M} = (float*) ((uintptr_t) c${M} + cn_stride); |
|
|
|
$for M in reversed(range(MR)): |
|
a${M} = (const float*) ((uintptr_t) a${M} - kc); |
|
|
|
nc -= ${NR}; |
|
} else { |
|
$for LOG2N in reversed(range(NR.bit_length())): |
|
$if NR != 1 << LOG2N: |
|
if (nc & ${1 << LOG2N}) { |
|
$if LOG2N >= 2: |
|
$for M in reversed(range(MR)): |
|
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]}); |
|
$for N in range(4, 1 << LOG2N, 4): |
|
_mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]}); |
|
|
|
$for M in reversed(range(MR)): |
|
$for N in range(0, NR - (1 << LOG2N), 4): |
|
vacc${M}x${ABC[N:N+4]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]}; |
|
|
|
$for M in reversed(range(MR)): |
|
c${M} += ${1 << LOG2N}; |
|
$elif LOG2N == 1: |
|
$for M in reversed(range(MR)): |
|
_mm_storel_pi((__m64*) c${M}, vacc${M}x${ABC[0:4]}); |
|
|
|
$for M in reversed(range(MR)): |
|
vacc${M}x${ABC[0:4]} = _mm_movehl_ps(vacc${M}x${ABC[0:4]}, vacc${M}x${ABC[0:4]}); |
|
|
|
$for M in reversed(range(MR)): |
|
c${M} += 2; |
|
$elif LOG2N == 0: |
|
$for M in reversed(range(MR)): |
|
_mm_store_ss(c${M}, vacc${M}x${ABC[0:4]}); |
|
} |
|
|
|
nc = 0; |
|
} |
|
} while (nc != 0); |
|
} |
|
|