test / src /f32-gemm /sse-dup.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
17.6 kB
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert DATATYPE in ["F32", "QC4", "QC8"]
$if DATATYPE == "QC8" and SSE == 2:
$assert NR % 8 == 0
$elif DATATYPE == "QC4":
$assert NR == 8
$else:
$assert NR % 4 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$SSE_HEADER = "immintrin.h" if AVX else {1: "immintrin.h", 2: "emmintrin.h", 4: "smmintrin.h"}[SSE]
#include <assert.h>
#include <${SSE_HEADER}>
#include <xnnpack/gemm.h>
$if DATATYPE == "QC8" and SSE == 4:
#include <xnnpack/unaligned.h>
$ISA = {0: "avx", 3: "fma3"}[FMA] if AVX else {1: "sse", 2: "sse2", 4: "sse41"}[SSE]
$DATATYPE_SPEC = {"F32": "f32", "QC8": "f32_qc8w", "QC4": "f32_qc4w"}[DATATYPE]
void xnn_${DATATYPE_SPEC}_gemm${"inc" if INC else ""}_minmax_ukernel_${MR}x${NR}__${ISA}_dup(
size_t mr,
size_t nc,
size_t kc,
const float* restrict a,
size_t a_stride,
$if DATATYPE == "F32":
const float* restrict w,
$else:
const void* restrict w,
float* restrict c,
size_t cm_stride,
size_t cn_stride,
$if INC:
const float* restrict acc,
$if DATATYPE == "QC4":
const union xnn_f32_qc4w_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
$else:
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(float) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
$if INC:
assert(acc != NULL);
const float* a0 = a;
float* c0 = c;
$for M in range(1, MR):
const float* a${M} = (const float*) ((uintptr_t) a${M-1} + a_stride);
float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
a${M} = a${M-1};
c${M} = c${M-1};
}
$if DATATYPE == "QC4":
const __m128i vminus_kernel_zero_point = _mm_load_si128((const __m128i *) params->sse.minus_kernel_zero_point);
const __m128i vmask = _mm_load_si128((const __m128i *) params->sse.mask);
do {
$if INC:
$for M in range(MR):
$for N in range(0, NR, 4):
__m128 vacc${M}x${ABC[N:N+4]} = _mm_load_ps(acc + ${M*NR+N});
acc += ${MR*NR};
$else:
$for N in range(0, NR, 4):
$if DATATYPE == "F32":
__m128 vacc0x${ABC[N:N+4]} = _mm_load_ps(w + ${N});
$else:
__m128 vacc0x${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N});
$for M in range(1, MR):
$for N in range(0, NR, 4):
__m128 vacc${M}x${ABC[N:N+4]} = vacc0x${ABC[N:N+4]};
$if DATATYPE == "F32":
w += ${NR};
$else:
w = (const float*) w + ${NR};
size_t k = kc;
for (; k >= 4 * sizeof(float); k -= 4 * sizeof(float)) {
$for M in range(MR):
const __m128 va${M} = _mm_loadu_ps(a${M});
a${M} += 4;
$for L in range(4):
$LLLL = str(L) * 4
$for M in range(MR):
$if SSE >= 2 and L < 3:
const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})));
$elif AVX >= 1:
const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$else:
const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$if DATATYPE == "F32":
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N});
$elif DATATYPE == "QC4":
$if L % 4 == 0:
$if SSE >= 4:
$for N in range(0, NR, 8):
const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})));
const __m128i vbwi${ABC[N:N+8]}c23 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2 + 8})));
$for N in range(0, NR, 8):
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4);
__m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask);
__m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 4);
$else:
$for N in range(0, NR, 8):
__m128i vbi${ABC[N:N+8]}c0123 = _mm_loadu_si128((const __m128i *) ((const int8_t*) w + ${N * 2}));
$for N in range(0, NR, 8):
__m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123);
__m128i vbwi${ABC[N:N+8]}c23 = _mm_unpackhi_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123);
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12);
__m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask);
__m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 12);
$for N in range(0, NR, 8):
$if SSE >= 4:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L});
$else:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
__m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point);
vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point);
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L});
$elif DATATYPE == "QC8":
$if SSE >= 4:
$for N in range(0, NR, 4):
const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N})));
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
$else:
$for N in range(0, NR, 8):
const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N}));
$for N in range(0, NR, 8):
const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L});
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
$for N in range(0, NR, 4):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]});
$else:
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}));
$if DATATYPE == "F32":
w += ${NR * 4};
$elif DATATYPE == "QC4":
w = (const int8_t*) w + ${NR * 4 // 2};
$else:
w = (const int8_t*) w + ${NR * 4};
}
if XNN_UNLIKELY(k >= 2 * sizeof(float)) {
$for M in range(MR):
$if SSE >= 2:
const __m128 va${M} = _mm_castsi128_ps(_mm_loadl_epi64((const __m128i *) a${M}));
$else:
const __m128 va${M} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) a${M});
a${M} += 2;
$for L in range(2):
$LLLL = str(L) * 4
$for M in range(MR):
$if SSE >= 2 and L < 3:
const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})));
$elif AVX >= 1:
const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$else:
const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}));
$if DATATYPE == "F32":
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N});
$elif DATATYPE == "QC4":
$if L % 2 == 0:
$if SSE >= 4:
$for N in range(0, NR, 8):
const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})));
$for N in range(0, NR, 8):
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4);
$else:
$for N in range(0, NR, 8):
__m128i vbi${ABC[N:N+8]}c01 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}));
$for N in range(0, NR, 8):
__m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c01, vbi${ABC[N:N+8]}c01);
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask);
__m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12);
$for N in range(0, NR, 8):
$if SSE >= 4:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L});
$else:
__m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
__m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128());
vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point);
vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point);
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L});
$elif DATATYPE == "QC8":
$if SSE >= 4:
$for N in range(0, NR, 4):
const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N})));
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L});
$else:
$for N in range(0, NR, 8):
const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N}));
$for N in range(0, NR, 8):
const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L});
const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24));
$for N in range(0, NR, 4):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]});
$else:
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}));
$if DATATYPE == "F32":
w += ${NR * 2};
$elif DATATYPE == "QC4":
w = (const int8_t*) w + ${NR * 2 // 2};
$else:
w = (const int8_t*) w + ${NR * 2};
k -= 2 * sizeof(float);
}
if XNN_UNLIKELY(k != 0) {
$for M in range(MR):
const __m128 va${M} = _mm_load1_ps(a${M});
a${M} += 1;
$if DATATYPE == "F32":
const __m128 vb${ABC[0:4]} = _mm_load_ps(w);
$for N in range(4, NR, 4):
const __m128 vb${ABC[N:N+4]} = _mm_load_ps(w + ${N});
w += ${NR};
$elif DATATYPE == "QC4":
$if SSE >= 4:
$for N in range(0, NR, 8):
const __m128i vbwi${ABC[N:N+8]}c0 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})));
$for N in range(0, NR, 8):
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask);
$else:
$for N in range(0, NR, 8):
__m128i vbi${ABC[N:N+8]}c0 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}));
$for N in range(0, NR, 8):
__m128i vbwi${ABC[N:N+8]}c0 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0, vbi${ABC[N:N+8]}c0);
__m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask);
$for N in range(0, NR, 8):
$if SSE >= 4:
__m128i vbi${ABC[N:N+4]}c0 = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c0);
$else:
__m128i vbi${ABC[N:N+4]}c0 = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128());
__m128i vbi${ABC[N+4:N+8]}c0 = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128());
vbi${ABC[N:N+4]}c0 = _mm_add_epi32(vbi${ABC[N:N+4]}c0, vminus_kernel_zero_point);
vbi${ABC[N+4:N+8]}c0 = _mm_add_epi32(vbi${ABC[N+4:N+8]}c0, vminus_kernel_zero_point);
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c0);
const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c0);
w = (const int8_t*) w + ${NR};
$elif DATATYPE == "QC8":
$if SSE >= 4:
const __m128i vbi${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const void*) w)));
$for N in range(4, NR, 4):
const __m128i vbi${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${N})));
$for N in range(0, NR, 4):
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]});
$else:
$for N in range(0, NR, 8):
const __m128i vb${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N}));
$for N in range(0, NR, 8):
const __m128i vbw${ABC[N:N+8]} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}, vb${ABC[N:N+8]});
const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24));
const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24));
w = (const int8_t*) w + ${NR};
$for N in range(0, NR, 4):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}, vb${ABC[N:N+4]}, vacc${M}x${ABC[N:N+4]});
$else:
vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}, vb${ABC[N:N+4]}));
k -= sizeof(float);
}
$if DATATYPE in ["QC8", "QC4"]:
$for N in range(0, NR, 4):
const __m128 vscale${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N});
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = _mm_mul_ps(vacc${M}x${ABC[N:N+4]}, vscale${ABC[N:N+4]});
w = (const float*) w + ${NR};
const __m128 vmax = _mm_load_ps(params->sse.max);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = _mm_min_ps(vacc${M}x${ABC[N:N+4]}, vmax);
const __m128 vmin = _mm_load_ps(params->sse.min);
$for N in range(0, NR, 4):
$for M in range(MR):
vacc${M}x${ABC[N:N+4]} = _mm_max_ps(vacc${M}x${ABC[N:N+4]}, vmin);
if XNN_LIKELY(nc >= ${NR}) {
$for M in reversed(range(MR)):
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]});
$for N in range(4, NR, 4):
_mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]});
c${M} = (float*) ((uintptr_t) c${M} + cn_stride);
$for M in reversed(range(MR)):
a${M} = (const float*) ((uintptr_t) a${M} - kc);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length())):
$if NR != 1 << LOG2N:
if (nc & ${1 << LOG2N}) {
$if LOG2N >= 2:
$for M in reversed(range(MR)):
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]});
$for N in range(4, 1 << LOG2N, 4):
_mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]});
$for M in reversed(range(MR)):
$for N in range(0, NR - (1 << LOG2N), 4):
vacc${M}x${ABC[N:N+4]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]};
$for M in reversed(range(MR)):
c${M} += ${1 << LOG2N};
$elif LOG2N == 1:
$for M in reversed(range(MR)):
_mm_storel_pi((__m64*) c${M}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
vacc${M}x${ABC[0:4]} = _mm_movehl_ps(vacc${M}x${ABC[0:4]}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
c${M} += 2;
$elif LOG2N == 0:
$for M in reversed(range(MR)):
_mm_store_ss(c${M}, vacc${M}x${ABC[0:4]});
}
nc = 0;
}
} while (nc != 0);
}