|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/common.h> |
|
#include <xnnpack/intrinsics-polyfill.h> |
|
#include <xnnpack/vunary.h> |
|
|
|
|
|
void xnn_f16_vsigmoid_ukernel__avx2_rr1_p2_rcp_x16( |
|
size_t batch, |
|
const void* input, |
|
void* output, |
|
const union xnn_f16_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(batch != 0); |
|
assert(batch % sizeof(uint16_t) == 0); |
|
assert(input != NULL); |
|
assert(output != NULL); |
|
|
|
const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p2.sign_mask); |
|
const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p2.magic_bias); |
|
const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p2.log2e); |
|
const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p2.minus_ln2); |
|
const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p2.c2); |
|
const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p2.c1); |
|
const __m256 vone = _mm256_load_ps(params->avx2_rr1_p2.one); |
|
const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p2.denorm_cutoff); |
|
|
|
const uint16_t* i = (const uint16_t*) input; |
|
uint16_t* o = (uint16_t*) output; |
|
for (; batch >= 16 * sizeof(uint16_t); batch -= 16 * sizeof(uint16_t)) { |
|
const __m256 vx0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
const __m256 vx1 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + 8))); |
|
i += 16; |
|
|
|
const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask); |
|
const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask); |
|
|
|
__m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias); |
|
__m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias); |
|
|
|
const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23)); |
|
const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23)); |
|
|
|
vn0 = _mm256_sub_ps(vn0, vmagic_bias); |
|
vn1 = _mm256_sub_ps(vn1, vmagic_bias); |
|
|
|
__m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0); |
|
__m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1); |
|
|
|
const __m256 vp0 = _mm256_fmadd_ps(vc2, vt0, vc1); |
|
const __m256 vp1 = _mm256_fmadd_ps(vc2, vt1, vc1); |
|
|
|
vt0 = _mm256_mul_ps(vt0, vs0); |
|
vt1 = _mm256_mul_ps(vt1, vs1); |
|
|
|
const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0); |
|
const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1); |
|
|
|
const __m256 vd0 = _mm256_add_ps(ve0, vone); |
|
const __m256 vd1 = _mm256_add_ps(ve1, vone); |
|
|
|
const __m256 vr0 = _mm256_rcp_ps(vd0); |
|
const __m256 vr1 = _mm256_rcp_ps(vd1); |
|
|
|
__m256 vf0 = _mm256_mul_ps(ve0, vr0); |
|
__m256 vf1 = _mm256_mul_ps(ve1, vr1); |
|
|
|
vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0); |
|
vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1); |
|
|
|
vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0); |
|
vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1); |
|
|
|
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf0, _MM_FROUND_TO_NEAREST_INT)); |
|
_mm_storeu_si128((__m128i*) (o + 8), _mm256_cvtps_ph(vf1, _MM_FROUND_TO_NEAREST_INT)); |
|
o += 16; |
|
} |
|
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) { |
|
const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
i += 8; |
|
|
|
const __m256 vz = _mm256_or_ps(vx, vsign_mask); |
|
|
|
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
|
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
|
vn = _mm256_sub_ps(vn, vmagic_bias); |
|
|
|
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
|
|
|
const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1); |
|
vt = _mm256_mul_ps(vt, vs); |
|
const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); |
|
|
|
const __m256 vd = _mm256_add_ps(ve, vone); |
|
const __m256 vr = _mm256_rcp_ps(vd); |
|
__m256 vf = _mm256_mul_ps(ve, vr); |
|
|
|
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); |
|
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); |
|
|
|
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT)); |
|
o += 8; |
|
} |
|
if XNN_UNLIKELY(batch != 0) { |
|
assert(batch >= 1 * sizeof(uint16_t)); |
|
assert(batch <= 7 * sizeof(uint16_t)); |
|
const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
|
|
const __m256 vz = _mm256_or_ps(vx, vsign_mask); |
|
|
|
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
|
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
|
vn = _mm256_sub_ps(vn, vmagic_bias); |
|
|
|
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
|
|
|
const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1); |
|
vt = _mm256_mul_ps(vt, vs); |
|
const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); |
|
|
|
const __m256 vd = _mm256_add_ps(ve, vone); |
|
const __m256 vr = _mm256_rcp_ps(vd); |
|
__m256 vf = _mm256_mul_ps(ve, vr); |
|
|
|
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); |
|
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); |
|
|
|
__m128i vh = _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT); |
|
if (batch & (4 * sizeof(uint16_t))) { |
|
_mm_storel_epi64((__m128i*) o, vh); |
|
vh = _mm_unpackhi_epi64(vh, vh); |
|
o += 4; |
|
} |
|
if (batch & (2 * sizeof(uint16_t))) { |
|
_mm_storeu_si32(o, vh); |
|
vh = _mm_srli_epi64(vh, 32); |
|
o += 2; |
|
} |
|
if (batch & (1 * sizeof(uint16_t))) { |
|
*o = (uint16_t) _mm_extract_epi16(vh, 0); |
|
} |
|
} |
|
} |
|
|