test / src /f16-rsum /neonfp16arith.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
2.61 kB
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
$assert ACCUMULATORS <= SIMD_TILE
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/common.h>
#include <xnnpack/reduce.h>
$ACC_SUFFIX = "" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS
void xnn_f16_rsum_ukernel__neonfp16arith_x${BATCH_TILE}${ACC_SUFFIX}(
size_t batch,
const void* input,
void* output,
const union xnn_f16_scale_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(batch != 0);
assert(batch % sizeof(uint16_t) == 0);
assert(input != NULL);
assert(output != NULL);
const uint16_t* i = (const uint16_t*) input;
uint16_t* o = (uint16_t*) output;
$for A in range(ACCUMULATORS):
float16x8_t vacc${A} = vreinterpretq_f16_u16(vmovq_n_u16(0));
$if BATCH_TILE > 8:
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) {
$for N in range(SIMD_TILE):
const float16x8_t vt${N} = vreinterpretq_f16_u16(vld1q_u16(i)); i += 8;
$for N in range(SIMD_TILE):
vacc${N % ACCUMULATORS} = vaddq_f16(vacc${N % ACCUMULATORS}, vt${N});
}
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A} = vaddq_f16(vacc${A}, vacc${A + ACC_SLICE});
$ACC_SLICE *= 2
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) {
const float16x8_t vt = vreinterpretq_f16_u16(vld1q_u16(i)); i += 8;
vacc0 = vaddq_f16(vacc0, vt);
}
const float16x4_t vscale = vreinterpret_f16_u16(vld1_dup_u16(&params->fp16arith.scale));
float16x4_t vacc = vadd_f16(vget_low_f16(vacc0), vget_high_f16(vacc0));
if XNN_UNLIKELY(batch & (4 * sizeof(uint16_t))) {
const float16x4_t vt = vreinterpret_f16_u16(vld1_u16(i)); i += 4;
vacc = vadd_f16(vacc, vt);
}
vacc = vpadd_f16(vacc, vacc);
if XNN_UNLIKELY(batch & (2 * sizeof(uint16_t))) {
const float16x4_t vt = vreinterpret_f16_u32(vld1_dup_u32((const void*) i)); i += 2;
vacc = vadd_f16(vacc, vt);
}
vacc = vpadd_f16(vacc, vacc);
if XNN_UNLIKELY(batch & (1 * sizeof(uint16_t))) {
const float16x4_t vt = vreinterpret_f16_u16(vld1_dup_u16(i));
vacc = vadd_f16(vacc, vt);
}
vacc = vmul_f16(vacc, vscale);
vst1_lane_u16(o, vreinterpret_u16_f16(vacc), 0);
}