test / src /f16-vbinary /vop-fp16arith.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
3.89 kB
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE >= 1
$ABC = "01234567456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert OP in ["ADD", "DIV", "MAX", "MIN", "MUL", "SUB", "SQRDIFF"]
$assert ACTIVATION in ["LINEAR", "MINMAX"]
#include <assert.h>
$if ACTIVATION == "MINMAX":
#include <string.h>
#include <arm_fp16.h>
#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/vbinary.h>
$VOPH_F16 = {
$ "ADD": lambda x, y: "vaddh_f16(%s, %s)" % (x, y),
$ "DIV": lambda x, y: "vdivh_f16(%s, %s)" % (x, y),
$ "MAX": lambda x, y: "vmaxnmh_f16(%s, %s)" % (x, y),
$ "MIN": lambda x, y: "vminnmh_f16(%s, %s)" % (x, y),
$ "MUL": lambda x, y: "vmulh_f16(%s, %s)" % (x, y),
$ "SUB": lambda x, y: "vsubh_f16(%s, %s)" % (x, y),
$ "SQRDIFF": lambda x, y: "vsubh_f16(%s, %s)" % (x, y),
$}[OP]
$SUFFIX = {"LINEAR": "", "MINMAX": "_minmax"}[ACTIVATION]
$PARAMS = {"LINEAR": "xnn_f16_default_params", "MINMAX": "xnn_f16_minmax_params"}[ACTIVATION]
void xnn_f16_v${OP.lower()}${SUFFIX}_ukernel__fp16arith_x${BATCH_TILE}(
size_t batch,
const void* restrict input_a,
const void* restrict input_b,
void* restrict output,
const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(batch != 0);
assert(batch % sizeof(float16_t) == 0);
assert(input_a != NULL);
assert(input_b != NULL);
assert(output != NULL);
const float16_t* a = (const float16_t*) input_a;
const float16_t* b = (const float16_t*) input_b;
float16_t* o = (float16_t*) output;
$if ACTIVATION == "MINMAX":
float16_t vy_min, vy_max;
memcpy(&vy_min, &params->fp16arith.min, sizeof(vy_min));
memcpy(&vy_max, &params->fp16arith.max, sizeof(vy_max));
$if BATCH_TILE > 1:
for (; batch >= ${BATCH_TILE} * sizeof(float16_t); batch -= ${BATCH_TILE} * sizeof(float16_t)) {
$for N in range(BATCH_TILE):
const float16_t va${ABC[N]} = *a++;
$for N in range(BATCH_TILE):
const float16_t vb${ABC[N]} = *b++;
$for N in range(BATCH_TILE):
float16_t vacc${ABC[N]} = ${VOPH_F16("va" + ABC[N], "vb" + ABC[N])};
$if OP == "SQRDIFF":
$for N in range(BATCH_TILE):
vacc${ABC[N]} = vmulh_f16(vacc${ABC[N]}, vacc${ABC[N]});
$if ACTIVATION == "MINMAX":
$for N in range(BATCH_TILE):
vacc${ABC[N]} = vmaxnmh_f16(vacc${ABC[N]}, vy_min);
$for N in range(BATCH_TILE):
vacc${ABC[N]} = vminnmh_f16(vacc${ABC[N]}, vy_max);
$for N in range(BATCH_TILE):
*o++ = vacc${ABC[N]};
}
if XNN_UNLIKELY(batch != 0) {
$if BATCH_TILE > 2:
do {
const float16_t va = *a++;
const float16_t vb = *b++;
float16_t vacc = ${VOPH_F16("va", "vb")};
$if OP == "SQRDIFF":
vacc = vmulh_f16(vacc, vacc);
$if ACTIVATION == "MINMAX":
vacc = vmaxnmh_f16(vacc, vy_min);
vacc = vminnmh_f16(vacc, vy_max);
*o++ = vacc;
batch -= sizeof(float16_t);
} while (batch != 0);
$else:
const float16_t va = *a;
const float16_t vb = *b;
float16_t vacc = ${VOPH_F16("va", "vb")};
$if OP == "SQRDIFF":
vacc = vmulh_f16(vacc, vacc);
$if ACTIVATION == "MINMAX":
vacc = vmaxnmh_f16(vacc, vy_min);
vacc = vminnmh_f16(vacc, vy_max);
*o = vacc;
}
$else:
do {
const float16_t va = *a++;
const float16_t vb = *b++;
float16_t vacc = ${VOPH_F16("va", "vb")};
$if OP == "SQRDIFF":
vacc = vmulh_f16(vacc, vacc);
$if ACTIVATION == "MINMAX":
vacc = vmaxnmh_f16(vacc, vy_min);
vacc = vminnmh_f16(vacc, vy_max);
*o++ = vacc;
batch -= sizeof(float16_t);
} while (batch != 0);
}