|
|
|
|
|
|
|
|
|
|
|
$assert NR % 4 == 0 |
|
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
|
|
#include <assert.h> |
|
|
|
#include <arm_neon.h> |
|
|
|
#include <xnnpack/gemm.h> |
|
|
|
|
|
void xnn_bf16_gemm_minmax_ukernel_${MR}x${NR}c8__neonfma_shland( |
|
size_t mr, |
|
size_t nc, |
|
size_t kc, |
|
const void* restrict a, |
|
size_t a_stride, |
|
const void* restrict w_ptr, |
|
void* restrict c, |
|
size_t cm_stride, |
|
size_t cn_stride, |
|
const union xnn_bf16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(mr != 0); |
|
assert(mr <= ${MR}); |
|
assert(nc != 0); |
|
assert(kc != 0); |
|
assert(kc % sizeof(uint16_t) == 0); |
|
assert(a != NULL); |
|
assert(w_ptr != NULL); |
|
assert(c != NULL); |
|
|
|
const uint16_t* a0 = (const uint16_t*) a; |
|
uint16_t* c0 = (uint16_t*) c; |
|
$for M in range(1, MR): |
|
const uint16_t* a${M} = (const uint16_t*) ((uintptr_t) a${M-1} + a_stride); |
|
uint16_t* c${M} = (uint16_t*) ((uintptr_t) c${M-1} + cm_stride); |
|
$if M % 2 == 0: |
|
if XNN_UNPREDICTABLE(mr <= ${M}) { |
|
a${M} = a${M-1}; |
|
c${M} = c${M-1}; |
|
} |
|
$elif M + 1 == MR: |
|
if XNN_UNPREDICTABLE(mr != ${M+1}) { |
|
a${M} = a${M-1}; |
|
c${M} = c${M-1}; |
|
} |
|
$else: |
|
if XNN_UNPREDICTABLE(mr < ${M+1}) { |
|
a${M} = a${M-1}; |
|
c${M} = c${M-1}; |
|
} |
|
|
|
const uint16_t* w = (const uint16_t*) w_ptr; |
|
const uint16x8_t vmask = vreinterpretq_u16_u32(vmovq_n_u32(UINT32_C(0xFFFF0000))); |
|
do { |
|
$for N in range(NR): |
|
float32x4_t vacc0x${ABC[N]} = vreinterpretq_f32_u32(vshll_n_u16(vld1_lane_u16(w, vdup_n_u16(0), 0), 16)); w += 1; |
|
$for M in range(1, MR): |
|
$for N in range(NR): |
|
float32x4_t vacc${M}x${ABC[N]} = vacc0x${ABC[N]}; |
|
|
|
size_t k = kc; |
|
for (; k >= 8 * sizeof(uint16_t); k -= 8 * sizeof(uint16_t)) { |
|
$for M in range(MR): |
|
const uint16x8_t va${M} = vld1q_u16(a${M}); a${M} += 8; |
|
|
|
$for N in range(NR): |
|
const uint16x8_t vb${ABC[N]} = vld1q_u16(w); w += 8; |
|
|
|
$for M in range(MR): |
|
const float32x4_t va${M}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(va${M}), 16)); |
|
|
|
$for N in range(NR): |
|
const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(vb${ABC[N]}), 16)); |
|
|
|
$for N in range(NR): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}e, vb${ABC[N]}e); |
|
|
|
$for M in range(MR): |
|
const float32x4_t va${M}o = vreinterpretq_f32_u16(vandq_u16(va${M}, vmask)); |
|
|
|
$for N in range(NR): |
|
const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(vb${ABC[N]}, vmask)); |
|
|
|
$for N in range(NR): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}o, vb${ABC[N]}o); |
|
} |
|
if XNN_UNLIKELY(k != 0) { |
|
$for M in range(MR): |
|
const uint16x8_t va${M} = vld1q_u16(a${M}); a${M} = (const uint16_t*) ((uintptr_t) a${M} + k); |
|
|
|
$for N in range(NR): |
|
const uint16x8_t vb${ABC[N]} = vld1q_u16(w); w += 8; |
|
|
|
$for N in range(NR): |
|
const uint16x8_t vm${ABC[N]} = vceqq_u16(vb${ABC[N]}, vmovq_n_u16(0)); |
|
|
|
$for N in range(NR): |
|
const float32x4_t vb${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(vb${ABC[N]}), 16)); |
|
|
|
$for N in range(NR): |
|
$for M in range(MR): |
|
const uint16x8_t va${M}x${ABC[N]} = vbicq_u16(va${M}, vm${ABC[N]}); |
|
|
|
$for N in range(NR): |
|
$for M in range(MR): |
|
const float32x4_t va${M}x${ABC[N]}e = vreinterpretq_f32_u32(vshlq_n_u32(vreinterpretq_u32_u16(va${M}x${ABC[N]}), 16)); |
|
|
|
$for N in range(NR): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}e, vb${ABC[N]}e); |
|
|
|
$for N in range(NR): |
|
const float32x4_t vb${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(vb${ABC[N]}, vmask)); |
|
|
|
$for N in range(NR): |
|
$for M in range(MR): |
|
const float32x4_t va${M}x${ABC[N]}o = vreinterpretq_f32_u16(vandq_u16(va${M}x${ABC[N]}, vmask)); |
|
|
|
$for N in range(NR): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N]} = vfmaq_f32(vacc${M}x${ABC[N]}, va${M}x${ABC[N]}o, vb${ABC[N]}o); |
|
} |
|
|
|
#if XNN_ARCH_ARM64 |
|
$for N in range(0, NR, 2): |
|
$for M in range(MR): |
|
const float32x4_t vacc${M}x${ABC[N:N+2]} = vpaddq_f32(vacc${M}x${ABC[N]}, vacc${M}x${ABC[N+1]}); |
|
|
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
float32x4_t vacc${M}x${ABC[N:N+4]} = vpaddq_f32(vacc${M}x${ABC[N:N+2]}, vacc${M}x${ABC[N+2:N+4]}); |
|
#else |
|
$for N in range(NR): |
|
$for M in range(MR): |
|
const float32x2_t vsum${M}x${ABC[N]} = vadd_f32(vget_low_f32(vacc${M}x${ABC[N]}), vget_high_f32(vacc${M}x${ABC[N]})); |
|
|
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
float32x4_t vacc${M}x${ABC[N:N+4]} = vcombine_f32(vpadd_f32(vsum${M}x${ABC[N]}, vsum${M}x${ABC[N+1]}), vpadd_f32(vsum${M}x${ABC[N+2]}, vsum${M}x${ABC[N+3]})); |
|
#endif |
|
|
|
const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); |
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N:N+4]} = vminq_f32(vacc${M}x${ABC[N:N+4]}, vmax); |
|
|
|
const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); |
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
vacc${M}x${ABC[N:N+4]} = vmaxq_f32(vacc${M}x${ABC[N:N+4]}, vmin); |
|
|
|
$for N in range(0, NR, 4): |
|
$for M in range(MR): |
|
uint16x4_t vout${M}x${ABC[N:N+4]} = vshrn_n_u32(vreinterpretq_u32_f32(vacc${M}x${ABC[N:N+4]}), 16); |
|
|
|
if XNN_LIKELY(nc >= ${NR}) { |
|
$for M in range(MR): |
|
vst1_u16(c${M}, vout${M}x${ABC[0:4]}); |
|
$for N in range(4, NR, 4): |
|
vst1_u16(c${M} + ${N}, vout${M}x${ABC[N:N+4]}); |
|
c${M} = (uint16_t*) ((uintptr_t) c${M} + cn_stride); |
|
|
|
$for M in range(MR): |
|
a${M} = (const uint16_t*) ((uintptr_t) a${M} - kc); |
|
|
|
nc -= ${NR}; |
|
} else { |
|
$for LOG2N in reversed(range(NR.bit_length())): |
|
$if NR != 1 << LOG2N: |
|
if (nc & ${1 << LOG2N}) { |
|
$if LOG2N >= 2: |
|
$for N in range(0, 1 << LOG2N, 4): |
|
$for M in range(MR): |
|
vst1_u16(c${M}, vout${M}x${ABC[N:N+4]}); c${M} += 4; |
|
|
|
$for M in range(MR): |
|
$for N in range(0, NR - (1 << LOG2N), 4): |
|
vout${M}x${ABC[N:N+4]} = vout${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]}; |
|
$elif LOG2N == 1: |
|
$for M in range(MR): |
|
vst1_lane_u32((void*) c${M}, vreinterpret_u32_u16(vout${M}x${ABC[0:4]}), 0); c${M} += 2; |
|
|
|
$for M in range(MR): |
|
vout${M}x${ABC[0:4]} = vext_u16(vout${M}x${ABC[0:4]}, vout${M}x${ABC[0:4]}, 2); |
|
$elif LOG2N == 0: |
|
$for M in range(MR): |
|
vst1_lane_u16(c${M}, vout${M}x${ABC[0:4]}, 0); |
|
} |
|
|
|
nc = 0; |
|
} |
|
} while (nc != 0); |
|
} |
|
|