test / src /f32-dwconv /multipass-avx512.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
No virus
16.3 kB
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$CHANNEL_SUBTILE = 16
$assert CHANNEL_TILE % CHANNEL_SUBTILE == 0
$CHANNEL_ROUND = 1
$assert MIDDLE_PASS_TILE <= LAST_PASS_TILE
$assert FIRST_PASS_TILE >= 1
$assert MIDDLE_PASS_TILE >= 1
$assert LAST_PASS_TILE >= 1
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
void xnn_f32_dwconv_minmax_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__avx512f${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const float** input,
const float* weights,
float* output,
intptr_t input_stride,
size_t output_increment,
size_t input_offset,
const float* zero,
size_t kernel_size,
float* buffer,
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(channels != 0);
assert(output_width != 0);
assert(kernel_size > ${FIRST_PASS_TILE});
const __m512 vmin = _mm512_set1_ps(params->scalar.min);
const __m512 vmax = _mm512_set1_ps(params->scalar.max);
do {
const float* w = weights;
// First pass to process ${FIRST_PASS_TILE} inputs.
{
float* b = buffer;
$for K in range(FIRST_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input += ${FIRST_PASS_TILE};
// Process c channels and write to buffer.
size_t c = channels;
$if CHANNEL_TILE > 16:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
__m512 vacc${ABC[C//16]}p0 = _mm512_load_ps(w);
$else:
__m512 vacc${ABC[C//16]}p0 = _mm512_load_ps(w + ${C});
$for K in range(FIRST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
const __m512 vi${K}x${ABC[C//16]} = _mm512_loadu_ps(i${K});
$else:
const __m512 vi${K}x${ABC[C//16]} = _mm512_loadu_ps(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 16):
const __m512 vk${K}x${ABC[C//16]} = _mm512_load_ps(w + ${(K + 1) * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 16):
$if 1 <= K < ACCUMULATORS:
__m512 vacc${ABC[C//16]}p${K} = _mm512_mul_ps(vi${K}x${ABC[C//16]}, vk${K}x${ABC[C//16]});
$else:
vacc${ABC[C//16]}p${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x${ABC[C//16]}, vk${K}x${ABC[C//16]}, vacc${ABC[C//16]}p${K % ACCUMULATORS});
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C//16]}p${A} = _mm512_add_ps(vacc${ABC[C//16]}p${A}, vacc${ABC[C//16]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
_mm512_store_ps(b, vacc${ABC[C//16]}p0);
$else:
_mm512_store_ps(b + ${C}, vacc${ABC[C//16]}p0);
b += ${CHANNEL_TILE};
}
for (; c >= ${CHANNEL_SUBTILE}; c -= ${CHANNEL_SUBTILE}) {
__m512 vaccp0 = _mm512_load_ps(w);
$for K in range(FIRST_PASS_TILE):
const __m512 vi${K}x0 = _mm512_loadu_ps(i${K});
i${K} += ${CHANNEL_SUBTILE};
const __m512 vk${K}x0 = _mm512_load_ps(w + ${(K + 1) * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m512 vaccp${K} = _mm512_mul_ps(vi${K}x0, vk${K}x0);
$else:
vaccp${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x0, vk${K}x0, vaccp${K % ACCUMULATORS});
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vaccp0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vaccp${A} = _mm512_add_ps(vaccp${A}, vaccp${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm512_store_ps(b, vaccp0);
b += ${CHANNEL_SUBTILE};
}
if (c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << c) - UINT32_C(1)));
__m512 vaccp0 = _mm512_load_ps(w);
$for K in range(FIRST_PASS_TILE):
const __m512 vi${K}x0 = _mm512_maskz_loadu_ps(vmask, i${K});
const __m512 vk${K}x0 = _mm512_load_ps(w + ${(K + 1) * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m512 vaccp${K} = _mm512_mul_ps(vi${K}x0, vk${K}x0);
$else:
vaccp${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x0, vk${K}x0, vaccp${K % ACCUMULATORS});
w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vaccp0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vaccp${A} = _mm512_add_ps(vaccp${A}, vaccp${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm512_store_ps(b, vaccp0);
}
}
// Middle pass to process ${MIDDLE_PASS_TILE} inputs in each iteration.
for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) {
float* b = buffer;
$for K in range(MIDDLE_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
input += ${MIDDLE_PASS_TILE};
size_t c = channels;
$if CHANNEL_TILE > 16:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
__m512 vacc${ABC[C//16]}p0 = _mm512_load_ps(b);
$else:
__m512 vacc${ABC[C//16]}p0 = _mm512_load_ps(b + ${C});
$for K in range(MIDDLE_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
const __m512 vi${K}x${ABC[C//16]} = _mm512_loadu_ps(i${K});
$else:
const __m512 vi${K}x${ABC[C//16]} = _mm512_loadu_ps(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 16):
$if K == 0 and C == 0:
const __m512 vk${K}x${ABC[C//16]} = _mm512_load_ps(w);
$else:
const __m512 vk${K}x${ABC[C//16]} = _mm512_load_ps(w + ${K * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 16):
$if 1 <= K < ACCUMULATORS:
__m512 vacc${ABC[C//16]}p${K} = _mm512_mul_ps(vi${K}x${ABC[C//16]}, vk${K}x${ABC[C//16]});
$else:
vacc${ABC[C//16]}p${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x${ABC[C//16]}, vk${K}x${ABC[C//16]}, vacc${ABC[C//16]}p${K % ACCUMULATORS});
w += ${MIDDLE_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C//16]}p${A} = _mm512_add_ps(vacc${ABC[C//16]}p${A}, vacc${ABC[C//16]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
_mm512_store_ps(b, vacc${ABC[C//16]}p0);
$else:
_mm512_store_ps(b + ${C}, vacc${ABC[C//16]}p0);
b += ${CHANNEL_TILE};
}
for (; c >= 16; c -= 16) {
__m512 vaccp0 = _mm512_load_ps(b);
$for K in range(MIDDLE_PASS_TILE):
const __m512 vi${K}x0 = _mm512_loadu_ps(i${K});
i${K} += ${CHANNEL_SUBTILE};
$if K == 0:
const __m512 vk${K}x0 = _mm512_load_ps(w);
$else:
const __m512 vk${K}x0 = _mm512_load_ps(w + ${K * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m512 vaccp${K} = _mm512_mul_ps(vi${K}x0, vk${K}x0);
$else:
vaccp${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x0, vk${K}x0, vaccp${K % ACCUMULATORS});
w += ${MIDDLE_PASS_TILE * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vaccp0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vaccp${A} = _mm512_add_ps(vaccp${A}, vaccp${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm512_store_ps(b, vaccp0);
b += ${CHANNEL_SUBTILE};
}
if (c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << c) - UINT32_C(1)));
__m512 vaccp0 = _mm512_load_ps(b);
$for K in range(MIDDLE_PASS_TILE):
const __m512 vi${K}x0 = _mm512_maskz_loadu_ps(vmask, i${K});
$if K == 0:
const __m512 vk${K}x0 = _mm512_load_ps(w);
$else:
const __m512 vk${K}x0 = _mm512_load_ps(w + ${(K) * CHANNEL_SUBTILE});
$if 1 <= K < ACCUMULATORS:
__m512 vaccp${K} = _mm512_mul_ps(vi${K}x0, vk${K}x0);
$else:
vaccp${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x0, vk${K}x0, vaccp${K % ACCUMULATORS});
w += ${(MIDDLE_PASS_TILE) * CHANNEL_SUBTILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vaccp0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vaccp${A} = _mm512_add_ps(vaccp${A}, vaccp${A + ACC_SLICE});
$ACC_SLICE *= 2
_mm512_store_ps(b, vaccp0);
}
}
// Last pass to process up to ${LAST_PASS_TILE} inputs.
{
float* b = buffer;
$for K in range(0, LAST_PASS_TILE):
const float* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const float*) ((uintptr_t) i${K} + input_offset);
}
size_t c = channels;
$if CHANNEL_TILE > 16:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
__m512 vacc${ABC[C//16]}p0 = _mm512_load_ps(b);
$else:
__m512 vacc${ABC[C//16]}p0 = _mm512_load_ps(b + ${C});
b += ${CHANNEL_TILE};
$for K in range(LAST_PASS_TILE):
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
const __m512 vi${K}x${ABC[C//16]} = _mm512_loadu_ps(i${K});
$else:
const __m512 vi${K}x${ABC[C//16]} = _mm512_loadu_ps(i${K} + ${C});
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 16):
$if K == 0 and C == 0:
__m512 vk${K}x${ABC[C//16]} = _mm512_load_ps(w);
$else:
__m512 vk${K}x${ABC[C//16]} = _mm512_load_ps(w + ${K * CHANNEL_TILE + C});
$for C in range(0, CHANNEL_TILE, 16):
$if 1 <= K < ACCUMULATORS:
__m512 vacc${ABC[C//16]}p${K} = _mm512_mul_ps(vi${K}x${ABC[C//16]}, vk${K}x${ABC[C//16]});
$else:
vacc${ABC[C//16]}p${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x${ABC[C//16]}, vk${K}x${ABC[C//16]}, vacc${ABC[C//16]}p${K % ACCUMULATORS});
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0p0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C//16]}p${A} = _mm512_add_ps(vacc${ABC[C//16]}p${A}, vacc${ABC[C//16]}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 16):
__m512 vacc${ABC[C//16]} = _mm512_max_ps(vmin, vacc${ABC[C//16]}p0);
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C//16]} = _mm512_min_ps(vmax, vacc${ABC[C//16]});
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
_mm512_storeu_ps(output, vacc${ABC[C//16]});
$else:
_mm512_storeu_ps(output + ${C}, vacc${ABC[C//16]});
output += ${CHANNEL_TILE};
}
for (; c >= 16; c -= 16) {
__m512 vaccp0 = _mm512_load_ps(b);
b += 16;
$for K in range(LAST_PASS_TILE):
const __m512 vi${K}x0 = _mm512_loadu_ps(i${K});
i${K} += 16;
$if K == 0:
__m512 vk${K}x0 = _mm512_load_ps(w);
$else:
__m512 vk${K}x0 = _mm512_load_ps(w + ${K * 16});
$if 1 <= K < ACCUMULATORS:
__m512 vaccp${K} = _mm512_mul_ps(vi${K}x0, vk${K}x0);
$else:
vaccp${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x0, vk${K}x0, vaccp${K % ACCUMULATORS});
$if CHANNEL_TILE > 16:
w += ${LAST_PASS_TILE * 16};
$else:
w += ${LAST_PASS_TILE * CHANNEL_TILE};
$if ACCUMULATORS > 1:
// Add up all accumulators to vaccp0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vaccp${A} = _mm512_add_ps(vaccp${A}, vaccp${A + ACC_SLICE});
$ACC_SLICE *= 2
__m512 vacc = _mm512_max_ps(vmin, vaccp0);
vacc = _mm512_min_ps(vmax, vacc);
_mm512_storeu_ps(output, vacc);
output += 16;
}
if XNN_UNLIKELY(c != 0) {
assert(c >= 1);
assert(c <= ${CHANNEL_SUBTILE-1});
__m512 vaccp0 = _mm512_load_ps(b);
const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << c) - UINT32_C(1)));
$for K in range(LAST_PASS_TILE):
const __m512 vi${K}x0 = _mm512_maskz_loadu_ps(vmask, i${K});
$if K == 0:
__m512 vk${K}x0 = _mm512_load_ps(w);
$else:
__m512 vk${K}x0 = _mm512_load_ps(w + ${K * 16});
$if 1 <= K < ACCUMULATORS:
__m512 vaccp${K} = _mm512_mul_ps(vi${K}x0, vk${K}x0);
$else:
vaccp${K % ACCUMULATORS} = _mm512_fmadd_ps(vi${K}x0, vk${K}x0, vaccp${K % ACCUMULATORS});
$if ACCUMULATORS > 1:
// Add up all accumulators to vaccp0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vaccp${A} = _mm512_add_ps(vaccp${A}, vaccp${A + ACC_SLICE});
$ACC_SLICE *= 2
__m512 vacc = _mm512_max_ps(vmin, vaccp0);
vacc = _mm512_min_ps(vmax, vacc);
_mm512_mask_storeu_ps(output, vmask, vacc);
output += c;
}
}
input = (const float**) ((uintptr_t) input + input_stride);
output = (float*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}