|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <cstdlib> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <benchmark/benchmark.h> |
|
#include <fp16/fp16.h> |
|
#include "bench/spmm.h" |
|
#include "bench/utils.h" |
|
|
|
#include <xnnpack.h> |
|
#include <xnnpack/aligned-allocator.h> |
|
#include <xnnpack/common.h> |
|
#include <xnnpack/microfnptr.h> |
|
#include <xnnpack/microparams-init.h> |
|
#include <xnnpack/spmm.h> |
|
|
|
static inline bool is_fp16_zero(uint16_t x) { |
|
const uint16_t two_x = x + x; |
|
return two_x == 0; |
|
} |
|
|
|
static void f16_spmm(benchmark::State& state, |
|
xnn_f16_spmm_minmax_ukernel_fn spmm, uint32_t mr, uint32_t nr, float sparsity, |
|
xnn_init_f16_minmax_params_fn init_params, |
|
benchmark::utils::IsaCheckFunction isa_check = nullptr) |
|
{ |
|
if (isa_check && !isa_check(state)) { |
|
return; |
|
} |
|
const size_t mc = state.range(0); |
|
const size_t nc = state.range(1); |
|
const size_t kc = state.range(2); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
std::uniform_real_distribution<float> f32dist; |
|
std::uniform_real_distribution<float> pdist; |
|
|
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> input(kc * mc); |
|
|
|
const size_t ncols = nc / nr + nc % nr; |
|
std::vector<uint16_t> b(ncols * kc); |
|
std::vector<uint16_t> bias(nc); |
|
|
|
std::vector<uint32_t> nmap(nc); |
|
|
|
std::vector<int32_t> dmap(nc * kc); |
|
std::vector<uint16_t> w(nc * kc + nc); |
|
std::vector<uint16_t> output(nc * mc); |
|
|
|
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
|
std::generate(b.begin(), b.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
|
std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) ); |
|
std::fill(nmap.begin(), nmap.end(), 0); |
|
std::fill(dmap.begin(), dmap.end(), 0); |
|
std::fill(w.begin(), w.end(), 0); |
|
|
|
for (uint16_t& b_value : b) { |
|
if (pdist(rng) <= sparsity) { |
|
b_value = 0; |
|
} |
|
} |
|
|
|
uint32_t nnz = 0; |
|
uint32_t wcnt = 0; |
|
size_t last_kk = 0; |
|
bool first_nzz = true; |
|
size_t first_kk = 0; |
|
for (size_t nn = 0; nn < nc / nr; nn++) { |
|
for (size_t i = 0; i < nr; ++i) |
|
w[wcnt++] = bias[nr * nn + i]; |
|
for (size_t kk = 0; kk < kc; kk++) { |
|
if (!is_fp16_zero(b[nn * kc + kk])) { |
|
|
|
for (size_t i = 0; i < nr; ++i) |
|
w[wcnt++] = fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[nn * kc + kk]) + static_cast<float>(i)); |
|
|
|
if (first_nzz) { |
|
first_kk = kk; |
|
} else { |
|
const int32_t increment = int32_t(kk - last_kk) * int32_t(mc * sizeof(uint16_t)); |
|
dmap[nnz++] = increment; |
|
} |
|
last_kk = kk; |
|
first_nzz = false; |
|
nmap[nn] += 1; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
for (size_t nn = nc / nr; nn < ncols; nn++) { |
|
w[wcnt++] = bias[(nc / nr) * nr + (nn - nc / nr)]; |
|
for (size_t kk = 0; kk < kc; kk++) { |
|
if (!is_fp16_zero(b[nn * kc + kk])) { |
|
|
|
w[wcnt++] = b[nn * kc + kk]; |
|
|
|
if (first_nzz) { |
|
first_kk = kk; |
|
} else { |
|
const int32_t increment = int32_t(kk - last_kk) * int32_t(mc * sizeof(uint16_t)); |
|
dmap[nnz++] = increment; |
|
} |
|
last_kk = kk; |
|
first_nzz = false; |
|
nmap[nn] += 1; |
|
} |
|
} |
|
} |
|
|
|
const int64_t increment = int32_t(first_kk - last_kk) * int32_t(mc * sizeof(uint16_t)); |
|
dmap[nnz++] = increment; |
|
|
|
|
|
|
|
|
|
std::vector<uint16_t> b_full(nc * kc); |
|
if (nr == 1) { |
|
b_full = b; |
|
} |
|
else { |
|
for (size_t nn = 0; nn < nc / nr; nn++) { |
|
for (size_t kk = 0; kk < kc; kk++) { |
|
if (b[nn * kc + kk] != 0.0f) { |
|
for (size_t i = 0; i < nr; ++i) |
|
b_full[nr * nn * kc + i * kc + kk] = fp16_ieee_from_fp32_value( |
|
fp16_ieee_to_fp32_value(b[nn * kc + kk]) + static_cast<float>(i)); |
|
} |
|
} |
|
} |
|
for (size_t nn = nc / nr; nn < ncols; nn++) { |
|
for (size_t kk = 0; kk < kc; kk++) { |
|
if (b[nn * kc + kk] != 0.0f) { |
|
b_full[nr * (nc / nr) * kc + (nn - nc / nr) * kc + kk] = b[nn * kc + kk]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
w.resize(wcnt + 1); |
|
dmap.resize(nnz + 1); |
|
|
|
|
|
xnn_f16_minmax_params params; |
|
init_params(¶ms, 0xFC00 , 0x7C00 ); |
|
|
|
for (auto _ : state) { |
|
|
|
spmm(mc * sizeof(uint16_t), nc, |
|
input.data() + first_kk * mc, |
|
w.data(), dmap.data(), nmap.data(), |
|
output.data(), mc * sizeof(uint16_t), |
|
¶ms); |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["FLOPS"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * 2 * mc * nnz, benchmark::Counter::kIsRate); |
|
|
|
state.counters["EffFLOPS"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); |
|
} |
|
|
|
#if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64) |
|
static void spmm80_8x1__neonfp16arith(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith, 8, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_8x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith_pipelined, 8, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_8x1__neonfp16arith_x2(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith_x2, 8, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_16x1__neonfp16arith(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith, 16, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_16x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith_pipelined, 16, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_16x1__neonfp16arith_x2(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith_x2, 16, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_24x1__neonfp16arith(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith, 24, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_24x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith_pipelined, 24, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_24x1__neonfp16arith_x2(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith_x2, 24, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_32x1__neonfp16arith(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith, 32, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_32x1__neonfp16arith_pipelined(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith_pipelined, 32, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
static void spmm80_32x1__neonfp16arith_x2(benchmark::State& state, const char* net) { |
|
f16_spmm(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith_x2, 32, 1, 0.8f, |
|
xnn_init_f16_minmax_fp16arith_params, benchmark::utils::CheckNEONFP16ARITH); |
|
} |
|
|
|
BENCHMARK_SPMM(spmm80_8x1__neonfp16arith_pipelined) |
|
BENCHMARK_SPMM(spmm80_16x1__neonfp16arith_pipelined) |
|
BENCHMARK_SPMM(spmm80_24x1__neonfp16arith_pipelined) |
|
BENCHMARK_SPMM(spmm80_32x1__neonfp16arith_pipelined) |
|
BENCHMARK_SPMM(spmm80_8x1__neonfp16arith) |
|
BENCHMARK_SPMM(spmm80_16x1__neonfp16arith) |
|
BENCHMARK_SPMM(spmm80_24x1__neonfp16arith) |
|
BENCHMARK_SPMM(spmm80_32x1__neonfp16arith) |
|
BENCHMARK_SPMM(spmm80_8x1__neonfp16arith_x2) |
|
BENCHMARK_SPMM(spmm80_16x1__neonfp16arith_x2) |
|
BENCHMARK_SPMM(spmm80_24x1__neonfp16arith_x2) |
|
BENCHMARK_SPMM(spmm80_32x1__neonfp16arith_x2) |
|
#endif |
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN |
|
BENCHMARK_MAIN(); |
|
#endif |
|
|