|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
import PIL |
|
from transformers import CLIPFeatureExtractor, CLIPTokenizer |
|
|
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler |
|
from diffusers.utils import deprecate, logging, PIL_INTERPOLATION |
|
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel |
|
from diffusers.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class OnnxStableDiffusionControlNetPipeline(DiffusionPipeline): |
|
vae_encoder: OnnxRuntimeModel |
|
vae_decoder: OnnxRuntimeModel |
|
text_encoder: OnnxRuntimeModel |
|
tokenizer: CLIPTokenizer |
|
unet: OnnxRuntimeModel |
|
controlnet: OnnxRuntimeModel |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] |
|
safety_checker: OnnxRuntimeModel |
|
feature_extractor: CLIPFeatureExtractor |
|
|
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae_encoder: OnnxRuntimeModel, |
|
vae_decoder: OnnxRuntimeModel, |
|
text_encoder: OnnxRuntimeModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: OnnxRuntimeModel, |
|
controlnet: OnnxRuntimeModel, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
safety_checker: OnnxRuntimeModel, |
|
feature_extractor: CLIPFeatureExtractor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["clip_sample"] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
self.register_modules( |
|
vae_encoder=vae_encoder, |
|
vae_decoder=vae_decoder, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def _default_height_width(self, height, width, image): |
|
if isinstance(image, list): |
|
image = image[0] |
|
|
|
if height is None: |
|
if isinstance(image, PIL.Image.Image): |
|
height = image.height |
|
elif isinstance(image, np.ndarray): |
|
height = image.shape[3] |
|
|
|
height = (height // 8) * 8 |
|
|
|
if width is None: |
|
if isinstance(image, PIL.Image.Image): |
|
width = image.width |
|
elif isinstance(image, np.ndarray): |
|
width = image.shape[2] |
|
|
|
width = (width // 8) * 8 |
|
|
|
return height, width |
|
|
|
def prepare_image(self, image, width, height, batch_size, num_images_per_prompt, dtype): |
|
if not isinstance(image, np.ndarray): |
|
if isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
image = [ |
|
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image |
|
] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], np.ndarray): |
|
image = np.concatenate(image, axis=0) |
|
image = torch.from_numpy(image) |
|
|
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
return image |
|
|
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // 8, width // 8) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = generator.randn(*shape).astype(dtype) |
|
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta, torch_gen): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = torch_gen |
|
return extra_step_kwargs |
|
|
|
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
prompt to be encoded |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids |
|
|
|
if not np.array_equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] |
|
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] * batch_size |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] |
|
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) |
|
|
|
|
|
|
|
|
|
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[np.ndarray, PIL.Image.Image] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[np.random.RandomState] = None, |
|
latents: Optional[np.ndarray] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, |
|
callback_steps: int = 1, |
|
controlnet_conditioning_scale: float = 1.0, |
|
): |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
|
|
if generator: |
|
torch_seed = generator.randint(2147483647) |
|
torch_gen = torch.Generator().manual_seed(torch_seed) |
|
else: |
|
generator = np.random |
|
torch_gen = None |
|
|
|
height, width = self._default_height_width(height, width, image) |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
|
|
image = self.prepare_image( |
|
image, |
|
width, |
|
height, |
|
batch_size * num_images_per_prompt, |
|
num_images_per_prompt, |
|
np.float32, |
|
).numpy() |
|
|
|
if do_classifier_free_guidance: |
|
image = np.concatenate([image] * 2) |
|
|
|
|
|
latents_dtype = prompt_embeds.dtype |
|
latents_shape = (batch_size * num_images_per_prompt, 4, height // 8, width // 8) |
|
|
|
num_channels_latents = 4 |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
latents_dtype, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
|
|
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta, torch_gen) |
|
|
|
timestep_dtype = next( |
|
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" |
|
) |
|
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) |
|
latent_model_input = latent_model_input.cpu().numpy() |
|
|
|
timestep = np.array([t], dtype=timestep_dtype) |
|
|
|
blocksamples = self.controlnet( |
|
sample=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
controlnet_cond=image, |
|
conditioning_scale=1.0 |
|
) |
|
|
|
mid_block_res_sample=blocksamples[12] |
|
down_block_res_samples=blocksamples[0:12] |
|
|
|
down_block_res_samples = [ |
|
down_block_res_sample * controlnet_conditioning_scale |
|
for down_block_res_sample in down_block_res_samples |
|
] |
|
mid_block_res_sample *= controlnet_conditioning_scale |
|
|
|
|
|
|
|
noise_pred = self.unet( |
|
sample=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
down_block_0=down_block_res_samples[0], |
|
down_block_1=down_block_res_samples[1], |
|
down_block_2=down_block_res_samples[2], |
|
down_block_3=down_block_res_samples[3], |
|
down_block_4=down_block_res_samples[4], |
|
down_block_5=down_block_res_samples[5], |
|
down_block_6=down_block_res_samples[6], |
|
down_block_7=down_block_res_samples[7], |
|
down_block_8=down_block_res_samples[8], |
|
down_block_9=down_block_res_samples[9], |
|
down_block_10=down_block_res_samples[10], |
|
down_block_11=down_block_res_samples[11], |
|
mid_block_additional_residual=mid_block_res_sample |
|
) |
|
noise_pred = noise_pred[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
scheduler_output = self.scheduler.step( |
|
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs |
|
) |
|
latents = scheduler_output.prev_sample.numpy() |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
latents = 1 / 0.18215 * latents |
|
|
|
|
|
image = np.concatenate( |
|
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] |
|
) |
|
|
|
image = np.clip(image / 2 + 0.5, 0, 1) |
|
image = image.transpose((0, 2, 3, 1)) |
|
|
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor( |
|
self.numpy_to_pil(image), return_tensors="np" |
|
).pixel_values.astype(image.dtype) |
|
|
|
images, has_nsfw_concept = [], [] |
|
for i in range(image.shape[0]): |
|
image_i, has_nsfw_concept_i = self.safety_checker( |
|
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] |
|
) |
|
images.append(image_i) |
|
has_nsfw_concept.append(has_nsfw_concept_i[0]) |
|
image = np.concatenate(images) |
|
else: |
|
has_nsfw_concept = None |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
|