Androidonnxfork's picture
Upload folder using huggingface_hub
69c5ed3
raw
history blame
5.33 kB
# Copyright 2022 Dirk Moerenhout. All rights reserved.
#
# This program is free software: you can redistribute it and/or modify it under the terms
# of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not,
# see <https://www.gnu.org/licenses/>.
# We need regular expressions support
import re
# We need argparse for handling command line arguments
import argparse
# We need os.path for isdir
import os.path
# Numpy is used to provide a random generator
import numpy
# Needed to set session options
import onnxruntime as ort
from diffusers import OnnxStableDiffusionPipeline, OnnxRuntimeModel
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
type=str,
required=True,
help="Directory in current location to load model from",
)
parser.add_argument(
"--size",
default=512,
type=int,
required=False,
help="Width/Height of the picture, defaults to 512, use 768 when appropriate",
)
parser.add_argument(
"--steps",
default=30,
type=int,
required=False,
help="Scheduler steps to use",
)
parser.add_argument(
"--scale",
default=7.5,
type=float,
required=False,
help="Guidance scale (how strict it sticks to the prompt)"
)
parser.add_argument(
"--prompt",
default="a dog on a lawn with the eifel tower in the background",
type=str,
required=False,
help="Text prompt for generation",
)
parser.add_argument(
"--negprompt",
default="blurry, low quality",
type=str,
required=False,
help="Negative text prompt for generation (what to avoid)",
)
parser.add_argument(
"--seed",
type=int,
required=False,
help="Seed for generation, allows you to get the exact same image again",
)
parser.add_argument(
"--fixeddims",
action="store_true",
help="Pass fixed dimensions to ONNX Runtime. Test purposes only, NOT VRAM FRIENDLY!",
)
parser.add_argument(
"--cpu-textenc", "--cpuclip",
action="store_true",
help="Load Text Encoder on CPU to save VRAM"
)
parser.add_argument(
"--cpuvae",
action="store_true",
help="Load VAE on CPU, this will always load the Text Encoder on CPU too"
)
args = parser.parse_args()
VAECPU = TECPU = False
if args.cpuvae:
VAECPU = TECPU = True
if args.cpu_textenc:
TECPU=True
if match := re.search(r"([^/\\]*)[/\\]?$", args.model):
fmodel = match.group(1)
generator=numpy.random
imgname="testpicture-"+fmodel+"_"+str(args.size)+".png"
if args.seed is not None:
generator.seed(args.seed)
imgname="testpicture-"+fmodel+"_"+str(args.size)+"_seed"+str(args.seed)+".png"
if os.path.isdir(args.model+"/unet"):
height=args.size
width=args.size
sess_options = ort.SessionOptions()
sess_options.enable_mem_pattern = False
if args.fixeddims:
sess_options.add_free_dimension_override_by_name("unet_sample_batch", 2)
sess_options.add_free_dimension_override_by_name("unet_sample_channels", 4)
sess_options.add_free_dimension_override_by_name("unet_sample_height", 64)
sess_options.add_free_dimension_override_by_name("unet_sample_width", 64)
sess_options.add_free_dimension_override_by_name("unet_timestep_batch", 1)
sess_options.add_free_dimension_override_by_name("unet_ehs_batch", 2)
sess_options.add_free_dimension_override_by_name("unet_ehs_sequence", 77)
num_inference_steps=args.steps
guidance_scale=args.scale
prompt = args.prompt
negative_prompt = args.negprompt
if TECPU:
cputextenc=OnnxRuntimeModel.from_pretrained(args.model+"/text_encoder")
if VAECPU:
cpuvae=OnnxRuntimeModel.from_pretrained(args.model+"/vae_decoder")
pipe = OnnxStableDiffusionPipeline.from_pretrained(args.model,
provider="DmlExecutionProvider", text_encoder=cputextenc, vae_decoder=cpuvae,
vae_encoder=None)
else:
pipe = OnnxStableDiffusionPipeline.from_pretrained(args.model,
provider="DmlExecutionProvider", text_encoder=cputextenc)
else:
pipe = OnnxStableDiffusionPipeline.from_pretrained(args.model,
provider="DmlExecutionProvider", sess_options=sess_options)
image = pipe(prompt, width, height, num_inference_steps, guidance_scale,
negative_prompt,generator=generator).images[0]
image.save(imgname)
else:
print("model not found")