|
|
|
|
|
|
|
|
|
|
|
$assert ROW_TILE >= 1 |
|
$assert ACCUMULATORS >= 1 |
|
#include <assert.h> |
|
|
|
#include <xnnpack/dwconv.h> |
|
#include <xnnpack/math.h> |
|
|
|
|
|
void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__scalar_${ROW_TILE}x1${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}( |
|
size_t input_height, |
|
size_t input_width, |
|
const float* input, |
|
const float* weights, |
|
const float* zero, |
|
float* output, |
|
uint32_t padding_top, |
|
const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(input_height != 0); |
|
assert(input_width != 0); |
|
assert(input_width % sizeof(float) == 0); |
|
assert(padding_top >= 0); |
|
assert(padding_top <= 1); |
|
|
|
const float vmin = params->scalar.min; |
|
const float vmax = params->scalar.max; |
|
|
|
const float vbias = weights[0]; |
|
const float vk00 = weights[1]; |
|
const float vk01 = weights[2]; |
|
const float vk02 = weights[3]; |
|
const float vk10 = weights[4]; |
|
const float vk11 = weights[5]; |
|
const float vk12 = weights[6]; |
|
const float vk20 = weights[7]; |
|
const float vk21 = weights[8]; |
|
const float vk22 = weights[9]; |
|
|
|
$if ROW_TILE > 1: |
|
const size_t output_width = round_down_po2((input_width + (2 - 3 + 2 ) * sizeof(float)) / 2, sizeof(float)); |
|
|
|
const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width)); |
|
const float* i1 = (const float*) ((uintptr_t) i0 + input_width); |
|
if XNN_UNPREDICTABLE(padding_top != 0) { |
|
i0 = zero; |
|
} |
|
$for M in range(2, 1 + 2 * ROW_TILE): |
|
const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
|
|
|
float* o0 = output; |
|
$for M in range(1, ROW_TILE): |
|
float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
|
|
|
size_t padded_input_height = input_height + padding_top + 1 ; |
|
size_t output_height = (padded_input_height - 3 + 2 ) / 2; |
|
do { |
|
$for M in range(2, 1 + 2 * ROW_TILE): |
|
if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) { |
|
i${M} = zero; |
|
$if M % 2 == 1: |
|
o${(M - 1) |
|
} |
|
|
|
$for M in range(1 + 2 * ROW_TILE): |
|
float vi${M}x0 = 0.0f; |
|
|
|
size_t w = input_width; |
|
for (; w >= 2 * sizeof(float); w -= 2 * sizeof(float)) { |
|
$for M in range(1 + 2 * ROW_TILE): |
|
const float vi${M}x1 = i${M}[0]; |
|
|
|
$for K in range(3): |
|
$for M in range(ROW_TILE): |
|
$if K == 0: |
|
float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; |
|
$elif K < ACCUMULATORS: |
|
float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; |
|
$else: |
|
vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; |
|
|
|
$for M in range(1 + 2 * ROW_TILE): |
|
const float vi${M}x2 = i${M}[1]; |
|
i${M} += 2; |
|
|
|
$for K in range(3): |
|
$for M in range(ROW_TILE): |
|
$if K + 3 < ACCUMULATORS: |
|
float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1; |
|
$else: |
|
vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; |
|
|
|
$for M in range(1 + 2 * ROW_TILE): |
|
vi${M}x0 = vi${M}x2; |
|
|
|
$for K in range(3): |
|
$for M in range(ROW_TILE): |
|
vo${M}p${(K+6) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2; |
|
|
|
$if ACCUMULATORS > 1: |
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for M in range(ROW_TILE): |
|
vo${M}p${A} += vo${M}p${A + ACC_SLICE}; |
|
$ACC_SLICE *= 2 |
|
|
|
$for M in range(ROW_TILE): |
|
float vo${M} = math_max_f32(vo${M}p0, vmin); |
|
|
|
$for M in range(ROW_TILE): |
|
vo${M} = math_min_f32(vo${M}, vmax); |
|
|
|
$for M in reversed(range(ROW_TILE)): |
|
*o${M}++ = vo${M}; |
|
} |
|
|
|
assert(w <= 1 * sizeof(float)); |
|
if (w != 0) { |
|
$for M in range(1 + 2 * ROW_TILE): |
|
const float vi${M}x1 = *i${M}++; |
|
|
|
$for K in range(3): |
|
$for M in range(ROW_TILE): |
|
$if K == 0: |
|
float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; |
|
$elif K < ACCUMULATORS: |
|
float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; |
|
$else: |
|
vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; |
|
|
|
$for K in range(3): |
|
$for M in range(ROW_TILE): |
|
$if K + 3 < ACCUMULATORS: |
|
float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1; |
|
$else: |
|
vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; |
|
|
|
$if ACCUMULATORS > 1: |
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
$for M in range(ROW_TILE): |
|
vo${M}p${A} += vo${M}p${A + ACC_SLICE}; |
|
$ACC_SLICE *= 2 |
|
|
|
$for M in range(ROW_TILE): |
|
float vo${M} = math_max_f32(vo${M}p0, vmin); |
|
|
|
$for M in range(ROW_TILE): |
|
vo${M} = math_min_f32(vo${M}, vmax); |
|
|
|
$for M in reversed(range(ROW_TILE)): |
|
*o${M}++ = vo${M}; |
|
} |
|
|
|
i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE - 1}); |
|
i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE}); |
|
$for M in range(2, 1 + 2 * ROW_TILE): |
|
i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); |
|
|
|
$if ROW_TILE > 1: |
|
o0 = o${ROW_TILE - 1}; |
|
$for M in range(1, ROW_TILE): |
|
o${M} = (float*) ((uintptr_t) o${M-1} + output_width); |
|
|
|
$if ROW_TILE > 1: |
|
output_height = doz(output_height, ${ROW_TILE}); |
|
padded_input_height = doz(padded_input_height, ${ROW_TILE * 2}); |
|
$else: |
|
output_height -= 1; |
|
padded_input_height -= 2; |
|
} while (output_height != 0); |
|
} |
|
|