test / src /f32-dwconv2d-chw /3x3s2p1-sse.c.in
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
8.79 kB
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ROW_TILE >= 1
$assert ACCUMULATORS >= 1
#include <assert.h>
#include <xmmintrin.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>
void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__sse_${ROW_TILE}x4${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}(
size_t input_height,
size_t input_width,
const float* input,
const float* weights,
const float* zero,
float* output,
uint32_t padding_top,
const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(input_height != 0);
assert(input_width != 0);
assert(input_width % sizeof(float) == 0);
assert(padding_top >= 0);
assert(padding_top <= 1);
const __m128 vmask_even = _mm_load_ps((const float*) params->sse_stride2.mask_even);
const __m128 vmask_odd = _mm_load_ps((const float*) params->sse_stride2.mask_odd);
const __m128 vmax = _mm_load_ps(params->sse_stride2.max);
const __m128 vmin = _mm_load_ps(params->sse_stride2.min);
const __m128 vbias = _mm_load1_ps(weights);
const __m128 vk00 = _mm_load1_ps(weights + 1);
const __m128 vk01 = _mm_load1_ps(weights + 2);
const __m128 vk02 = _mm_load1_ps(weights + 3);
const __m128 vk10 = _mm_load1_ps(weights + 4);
const __m128 vk11 = _mm_load1_ps(weights + 5);
const __m128 vk12 = _mm_load1_ps(weights + 6);
const __m128 vk20 = _mm_load1_ps(weights + 7);
const __m128 vk21 = _mm_load1_ps(weights + 8);
const __m128 vk22 = _mm_load1_ps(weights + 9);
const size_t input_decrement = round_down_po2(input_width, 4 /* SIMD output width */ * 2 /* subsampling */ * sizeof(float));
$if ROW_TILE > 1:
const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float));
const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width));
const float* i1 = (const float*) ((uintptr_t) i0 + input_width);
if XNN_UNPREDICTABLE(padding_top != 0) {
i0 = zero;
}
$for M in range(2, 1 + 2 * ROW_TILE):
const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);
float* o0 = output;
$for M in range(1, ROW_TILE):
float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width);
size_t padded_input_height = input_height + padding_top + 1 /* padding bottom */;
size_t output_height = (padded_input_height - 3 /* kernel size */ + 2 /* subsampling */) / 2;
do {
$for M in range(2, 1 + 2 * ROW_TILE):
if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) {
i${M} = zero;
$if M % 2 == 1:
o${(M - 1) // 2} = o${(M - 1) // 2 - 1};
}
$for M in range(1 + 2 * ROW_TILE):
__m128 vi${M}x7531 = _mm_setzero_ps();
size_t w = input_width;
for (; w >= 8 * sizeof(float); w -= 8 * sizeof(float)) {
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}x89AB = _mm_loadu_ps(i${M});
const __m128 vi${M}xCDEF = _mm_loadu_ps(i${M} + 4);
i${M} += 8;
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}x8ACE = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vi${M}x9BDF = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(3, 1, 3, 1));
$for K in range(3):
$for M in range(ROW_TILE):
$if K == 0:
__m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1));
$elif K < ACCUMULATORS:
__m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1);
$else:
vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1));
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3));
$for K in range(3):
$for M in range(ROW_TILE):
$if K+3 < ACCUMULATORS:
__m128 vo${M}p${K+3} = _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2);
$else:
vo${M}p${(K+3) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+3) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2));
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}x79BD = _mm_move_ss(vi${M}xF9BD, vi${M}x7531);
$for M in range(1 + 2 * ROW_TILE):
vi${M}x7531 = vi${M}xF9BD;
$for K in range(3):
$for M in range(ROW_TILE):
vo${M}p${(K+6) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+6) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x79BD, vk${K}0));
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for M in range(ROW_TILE):
vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for M in range(ROW_TILE):
__m128 vo${M} = _mm_max_ps(vo${M}p0, vmin);
$for M in range(ROW_TILE):
vo${M} = _mm_min_ps(vo${M}, vmax);
$for M in reversed(range(ROW_TILE)):
_mm_storeu_ps(o${M}, vo${M});
o${M} += 4;
}
// Potentially process the last block of 0..7 pixels.
assert(w < 8 * sizeof(float));
if XNN_LIKELY(w != 0) {
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}x89AB = _mm_loadu_ps(i${M});
const __m128 vi${M}xCDEF = _mm_loadu_ps(i${M} + 4);
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}x8ACE = _mm_and_ps(vmask_even, _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(2, 0, 2, 0)));
const __m128 vi${M}x9BDF = _mm_and_ps(vmask_odd, _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(3, 1, 3, 1)));
$for K in range(3):
$for M in range(ROW_TILE):
$if K == 0:
__m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1));
$elif K < ACCUMULATORS:
__m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1);
$else:
vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1));
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3));
$for K in range(3):
$for M in range(ROW_TILE):
$if K+3 < ACCUMULATORS:
__m128 vo${M}p${K+3} = _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2);
$else:
vo${M}p${(K+3) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+3) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2));
$for M in range(1 + 2 * ROW_TILE):
const __m128 vi${M}x79BD = _mm_move_ss(vi${M}xF9BD, vi${M}x7531);
$for M in range(1 + 2 * ROW_TILE):
vi${M}x7531 = vi${M}xF9BD;
$for K in range(3):
$for M in range(ROW_TILE):
vo${M}p${(K+6) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+6) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x79BD, vk${K}0));
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for M in range(ROW_TILE):
vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE});
$ACC_SLICE *= 2
$for M in range(ROW_TILE):
__m128 vo${M} = _mm_max_ps(vo${M}p0, vmin);
$for M in range(ROW_TILE):
vo${M} = _mm_min_ps(vo${M}, vmax);
if (w == 7 * sizeof(float)) {
$for M in reversed(range(ROW_TILE)):
_mm_storeu_ps(o${M}, vo${M});
o${M} += 4;
} else {
w += 1 * sizeof(float);
if (w & (4 * sizeof(float))) {
$for M in reversed(range(ROW_TILE)):
_mm_storel_pi((__m64*) o${M}, vo${M});
o${M} += 2;
$for M in range(ROW_TILE):
vo${M} = _mm_movehl_ps(vo${M}, vo${M});
}
if (w & (2 * sizeof(float))) {
$for M in reversed(range(ROW_TILE)):
_mm_store_ss(o${M}, vo${M});
o${M} += 1;
}
}
}
i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE} - input_decrement);
$for M in range(1, 1 + 2 * ROW_TILE):
i${M} = (const float*) ((uintptr_t) i${M-1} + input_width);
$if ROW_TILE > 1:
o0 = o${ROW_TILE - 1};
$for M in range(1, ROW_TILE):
o${M} = (float*) ((uintptr_t) o${M-1} + output_width);
$if ROW_TILE > 1:
output_height = doz(output_height, ${ROW_TILE});
padded_input_height = doz(padded_input_height, ${ROW_TILE * 2});
$else:
output_height -= 1;
padded_input_height -= 2;
} while (output_height != 0);
}