|
|
|
|
|
|
|
|
|
|
|
$assert BATCH_TILE % 8 == 0 |
|
$assert BATCH_TILE >= 8 |
|
$SIMD_TILE = BATCH_TILE |
|
$assert ACCUMULATORS <= SIMD_TILE |
|
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
#include <assert.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/common.h> |
|
#include <xnnpack/reduce.h> |
|
#include <xnnpack/unaligned.h> |
|
|
|
|
|
$ACC_SUFFIX = "" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS |
|
void xnn_f16_f32acc_rsum_ukernel__f16c_x${BATCH_TILE}${ACC_SUFFIX}( |
|
size_t batch, |
|
const void* input, |
|
void* output, |
|
const union xnn_f16_f32acc_scale_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(batch != 0); |
|
assert(batch % sizeof(uint16_t) == 0); |
|
assert(input != NULL); |
|
assert(output != NULL); |
|
|
|
const uint16_t* i = (const uint16_t*) input; |
|
$for A in range(ACCUMULATORS): |
|
__m256 vacc${A} = _mm256_setzero_ps(); |
|
$if BATCH_TILE > 8: |
|
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) { |
|
const __m256 vt0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
$for N in range(1, SIMD_TILE): |
|
const __m256 vt${N} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8}))); |
|
i += ${BATCH_TILE}; |
|
|
|
$for N in range(SIMD_TILE): |
|
vacc${N % ACCUMULATORS} = _mm256_add_ps(vacc${N % ACCUMULATORS}, vt${N}); |
|
} |
|
$if ACCUMULATORS > 1: |
|
$ACC_SLICE = 1 |
|
$while ACC_SLICE < ACCUMULATORS: |
|
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2): |
|
$if A + ACC_SLICE < ACCUMULATORS: |
|
vacc${A} = _mm256_add_ps(vacc${A}, vacc${A + ACC_SLICE}); |
|
$ACC_SLICE *= 2 |
|
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) { |
|
const __m256 vt = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
i += 8; |
|
|
|
vacc0 = _mm256_add_ps(vacc0, vt); |
|
} |
|
if XNN_UNLIKELY(batch != 0) { |
|
assert(batch >= 1 * sizeof(uint16_t)); |
|
assert(batch <= 7 * sizeof(uint16_t)); |
|
const __m128i vmask = _mm_loadu_si128((const __m128i*) ((uintptr_t) ¶ms->avx.mask_table[7] - batch)); |
|
const __m128i vh = _mm_castps_si128(_mm_maskload_ps((const float*) i, vmask)); |
|
const __m256 vt = _mm256_cvtph_ps(vh); |
|
vacc0 = _mm256_add_ps(vacc0, vt); |
|
i = (const void*) ((uintptr_t) i + batch); |
|
if (batch & (1 * sizeof(uint16_t))) { |
|
const __m128i vh = _mm_insert_epi16(_mm_setzero_si128(), (int) unaligned_load_u16(i - 1), 0); |
|
const __m256 vt = _mm256_zextps128_ps256(_mm_cvtph_ps(vh)); |
|
vacc0 = _mm256_add_ps(vacc0, vt); |
|
} |
|
} |
|
__m128 vacc = _mm_add_ps(_mm256_castps256_ps128(vacc0), _mm256_extractf128_ps(vacc0, 1)); |
|
vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc)); |
|
vacc = _mm_add_ss(vacc, _mm_movehdup_ps(vacc)); |
|
vacc = _mm_mul_ss(vacc, _mm_load_ss(¶ms->avx.scale)); |
|
const __m128i vout = _mm_cvtps_ph(vacc, _MM_FROUND_TO_NEAREST_INT); |
|
unaligned_store_u16(output, (uint16_t) _mm_extract_epi16(vout, 0)); |
|
} |
|
|