|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <cfloat> |
|
#include <cmath> |
|
#include <functional> |
|
#include <limits> |
|
#include <memory> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <xnnpack.h> |
|
|
|
#include <benchmark/benchmark.h> |
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
#include "flatbuffers/include/flatbuffers/flatbuffers.h" |
|
#include "tensorflow/lite/interpreter.h" |
|
#include "tensorflow/lite/kernels/register.h" |
|
#include "tensorflow/lite/model.h" |
|
#include "tensorflow/lite/schema/schema_generated.h" |
|
#include "tensorflow/lite/version.h" |
|
#endif |
|
#include "bench/utils.h" |
|
|
|
static void xnnpack_average_pooling_qu8(benchmark::State& state, const char* net) { |
|
const size_t batch_size = state.range(0); |
|
const size_t input_height = state.range(1); |
|
const size_t input_width = state.range(2); |
|
const size_t pooling_size = state.range(3); |
|
const size_t padding_size = state.range(4); |
|
const size_t stride = state.range(5); |
|
const size_t channels = state.range(6); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
|
|
|
const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
|
const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
|
|
|
std::vector<uint8_t> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
|
std::generate(input.begin(), input.end(), std::ref(u8rng)); |
|
std::vector<uint8_t> output(batch_size * output_height * output_width * channels); |
|
std::fill(output.begin(), output.end(), 0xA5); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t pooling_op = nullptr; |
|
status = xnn_create_average_pooling2d_nhwc_qu8( |
|
padding_size, padding_size, padding_size, padding_size, |
|
pooling_size, pooling_size, |
|
stride, stride, |
|
channels, channels , channels , |
|
127 , 0.75f , |
|
127 , 1.25f , |
|
0, 255, |
|
0 , &pooling_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create Average Pooling operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_average_pooling2d_nhwc_qu8( |
|
pooling_op, |
|
batch_size, input_height, input_width, |
|
nullptr, nullptr, |
|
nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape Average Pooling operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_average_pooling2d_nhwc_qu8( |
|
pooling_op, |
|
input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup Average Pooling operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(pooling_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run Average Pooling operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(pooling_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete Average Pooling operator"); |
|
return; |
|
} |
|
pooling_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["bytes"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * |
|
batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(uint8_t), |
|
benchmark::Counter::kIsRate); |
|
} |
|
|
|
static void xnnpack_average_pooling_f32(benchmark::State& state, const char* net) { |
|
const size_t batch_size = state.range(0); |
|
const size_t input_height = state.range(1); |
|
const size_t input_width = state.range(2); |
|
const size_t pooling_size = state.range(3); |
|
const size_t padding_size = state.range(4); |
|
const size_t stride = state.range(5); |
|
const size_t channels = state.range(6); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
|
|
|
const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
|
const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
|
|
|
std::vector<float> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float)); |
|
std::generate(input.begin(), input.end(), std::ref(f32rng)); |
|
std::vector<float> output(batch_size * output_height * output_width * channels); |
|
std::fill(output.begin(), output.end(), std::nanf("")); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t pooling_op = nullptr; |
|
status = xnn_create_average_pooling2d_nhwc_f32( |
|
padding_size, padding_size, padding_size, padding_size, |
|
pooling_size, pooling_size, |
|
stride, stride, |
|
channels, channels , channels , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , &pooling_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to create Average Pooling operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_average_pooling2d_nhwc_f32( |
|
pooling_op, |
|
batch_size, input_height, input_width, |
|
nullptr, nullptr, |
|
nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape Average Pooling operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_average_pooling2d_nhwc_f32( |
|
pooling_op, |
|
input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup Average Pooling operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(pooling_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run Average Pooling operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(pooling_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete Average Pooling operator"); |
|
return; |
|
} |
|
pooling_op = nullptr; |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["bytes"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * |
|
batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float), |
|
benchmark::Counter::kIsRate); |
|
} |
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
void tflite_average_pooling_f32(benchmark::State& state, const char* net) { |
|
const size_t batch_size = state.range(0); |
|
const size_t input_height = state.range(1); |
|
const size_t input_width = state.range(2); |
|
const size_t pooling_size = state.range(3); |
|
const size_t padding_size = state.range(4); |
|
const size_t stride = state.range(5); |
|
const size_t channels = state.range(6); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
|
|
|
tflite::Padding padding = tflite::Padding_VALID; |
|
if (2 * padding_size == (pooling_size - 1)) { |
|
padding = tflite::Padding_SAME; |
|
} else if (padding_size == 0) { |
|
padding = tflite::Padding_VALID; |
|
} else { |
|
state.SkipWithError("unsupported padding"); |
|
return; |
|
} |
|
|
|
const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
|
const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
|
|
|
std::vector<float> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float)); |
|
std::generate(input.begin(), input.end(), std::ref(f32rng)); |
|
std::vector<float> output(batch_size * output_height * output_width * channels); |
|
std::fill(output.begin(), output.end(), std::nanf("")); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_AVERAGE_POOL_2D); |
|
|
|
flatbuffers::Offset<tflite::Pool2DOptions> pool2d_options = CreatePool2DOptions( |
|
builder, padding, |
|
stride , stride , |
|
pooling_size , pooling_size , |
|
tflite::ActivationFunctionType_NONE); |
|
|
|
flatbuffers::Offset<tflite::Buffer> buffers[1] = { |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}; |
|
|
|
const int32_t input_shape[4] = { |
|
static_cast<int32_t>(batch_size), |
|
static_cast<int32_t>(input_height), |
|
static_cast<int32_t>(input_width), |
|
static_cast<int32_t>(channels) |
|
}; |
|
const int32_t output_shape[4] = { |
|
static_cast<int32_t>(batch_size), |
|
static_cast<int32_t>(output_height), |
|
static_cast<int32_t>(output_width), |
|
static_cast<int32_t>(channels) |
|
}; |
|
|
|
flatbuffers::Offset<tflite::Tensor> tensors[2] = { |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(input_shape, 4), |
|
tflite::TensorType_FLOAT32), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(output_shape, 4), |
|
tflite::TensorType_FLOAT32), |
|
}; |
|
|
|
const int32_t op_inputs[1] = { 0 }; |
|
const int32_t op_outputs[1] = { 1 }; |
|
flatbuffers::Offset<tflite::Operator> op = CreateOperator( |
|
builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs, 1), |
|
builder.CreateVector<int32_t>(op_outputs, 1), |
|
tflite::BuiltinOptions_Pool2DOptions, |
|
pool2d_options.Union()); |
|
|
|
const int32_t graph_inputs[1] = { 0 }; |
|
const int32_t graph_outputs[1] = { 1 }; |
|
flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors, 2), |
|
builder.CreateVector<int32_t>(graph_inputs, 1), |
|
builder.CreateVector<int32_t>(graph_outputs, 1), |
|
builder.CreateVector(&op, 1)); |
|
|
|
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
builder.CreateString("AVERAGE_POOL_2D model"), |
|
builder.CreateVector(buffers, 1)); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
if (interpreter == nullptr) { |
|
state.SkipWithError("TFLite interpreter is null"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate( |
|
interpreter->typed_tensor<float>(0), |
|
interpreter->typed_tensor<float>(0) + batch_size * input_height * input_width * channels, |
|
std::ref(f32rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["bytes"] = benchmark::Counter( |
|
uint64_t(state.iterations()) * |
|
batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float), |
|
benchmark::Counter::kIsRate); |
|
} |
|
#endif |
|
|
|
|
|
static void ImageNet(benchmark::internal::Benchmark* b) { |
|
b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
|
|
|
|
|
b->Args({1, 13, 13, 13, 0, 1, 1000}); |
|
b->Args({1, 7, 7, 7, 0, 1, 1000}); |
|
} |
|
|
|
|
|
static void ShuffleNetV1G1(benchmark::internal::Benchmark* b) { |
|
b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
|
|
|
|
|
b->Args({1, 56, 56, 3, 1, 2, 24}); |
|
b->Args({1, 28, 28, 3, 1, 2, 144}); |
|
b->Args({1, 14, 14, 3, 1, 2, 288}); |
|
b->Args({1, 7, 7, 3, 1, 2, 576}); |
|
} |
|
|
|
|
|
static void ShuffleNetV1G2(benchmark::internal::Benchmark* b) { |
|
b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
|
|
|
|
|
b->Args({1, 56, 56, 3, 1, 2, 24}); |
|
b->Args({1, 28, 28, 3, 1, 2, 200}); |
|
b->Args({1, 14, 14, 3, 1, 2, 400}); |
|
b->Args({1, 7, 7, 3, 1, 2, 800}); |
|
} |
|
|
|
|
|
static void ShuffleNetV1G3(benchmark::internal::Benchmark* b) { |
|
b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
|
|
|
|
|
b->Args({1, 56, 56, 3, 1, 2, 24}); |
|
b->Args({1, 28, 28, 3, 1, 2, 240}); |
|
b->Args({1, 14, 14, 3, 1, 2, 480}); |
|
b->Args({1, 7, 7, 3, 1, 2, 960}); |
|
} |
|
|
|
|
|
static void ShuffleNetV1G4(benchmark::internal::Benchmark* b) { |
|
b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
|
|
|
|
|
b->Args({1, 56, 56, 3, 1, 2, 24}); |
|
b->Args({1, 28, 28, 3, 1, 2, 272}); |
|
b->Args({1, 14, 14, 3, 1, 2, 576}); |
|
b->Args({1, 7, 7, 3, 1, 2, 1088}); |
|
} |
|
|
|
|
|
static void ShuffleNetV1G8(benchmark::internal::Benchmark* b) { |
|
b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
|
|
|
|
|
b->Args({1, 56, 56, 3, 1, 2, 24}); |
|
b->Args({1, 28, 28, 3, 1, 2, 384}); |
|
b->Args({1, 14, 14, 3, 1, 2, 768}); |
|
b->Args({1, 7, 7, 3, 1, 2, 1536}); |
|
} |
|
|
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
BENCHMARK_CAPTURE(tflite_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); |
|
BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
|
BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
|
BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
|
BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
|
BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
|
#endif |
|
|
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
|
BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN |
|
BENCHMARK_MAIN(); |
|
#endif |
|
|