test / build /FP16-source /bench /from-alt-array.cc
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
6.01 kB
#include <benchmark/benchmark.h>
#include <fp16.h>
#ifndef EMSCRIPTEN
#include <fp16/psimd.h>
#endif
#include <vector>
#include <random>
#include <chrono>
#include <functional>
#include <algorithm>
#if defined(__ARM_NEON__) || defined(__aarch64__)
#include <arm_neon.h>
#endif
static void fp16_alt_to_fp32_bits(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_int_distribution<uint16_t>(0, 0x7BFF), std::mt19937(seed));
std::vector<uint16_t> fp16(state.range(0));
std::vector<uint32_t> fp32(state.range(0));
std::generate(fp16.begin(), fp16.end(),
[&rng]{ return fp16_alt_from_fp32_value(rng()); });
while (state.KeepRunning()) {
uint16_t* input = fp16.data();
benchmark::DoNotOptimize(input);
uint32_t* output = fp32.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] = fp16_alt_to_fp32_bits(input[i]);
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(fp16_alt_to_fp32_bits)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void fp16_alt_to_fp32_value(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_int_distribution<uint16_t>(0, 0x7BFF), std::mt19937(seed));
std::vector<uint16_t> fp16(state.range(0));
std::vector<float> fp32(state.range(0));
std::generate(fp16.begin(), fp16.end(),
[&rng]{ return fp16_alt_from_fp32_value(rng()); });
while (state.KeepRunning()) {
uint16_t* input = fp16.data();
benchmark::DoNotOptimize(input);
float* output = fp32.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i++) {
output[i] = fp16_alt_to_fp32_value(input[i]);
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(fp16_alt_to_fp32_value)->RangeMultiplier(2)->Range(1<<10, 64<<20);
#ifndef EMSCRIPTEN
static void fp16_alt_to_fp32_psimd(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_int_distribution<uint16_t>(0, 0x7BFF), std::mt19937(seed));
std::vector<uint16_t> fp16(state.range(0));
std::vector<float> fp32(state.range(0));
std::generate(fp16.begin(), fp16.end(),
[&rng]{ return fp16_alt_from_fp32_value(rng()); });
while (state.KeepRunning()) {
uint16_t* input = fp16.data();
benchmark::DoNotOptimize(input);
float* output = fp32.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n - 4; i += 4) {
psimd_store_f32(&output[i],
fp16_alt_to_fp32_psimd(
psimd_load_u16(&input[i])));
}
const psimd_u16 last_vector = { input[n - 4], input[n - 3], input[n - 2], input[n - 1] };
psimd_store_f32(&output[n - 4],
fp16_alt_to_fp32_psimd(last_vector));
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(fp16_alt_to_fp32_psimd)->RangeMultiplier(2)->Range(1<<10, 64<<20);
static void fp16_alt_to_fp32x2_psimd(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_int_distribution<uint16_t>(0, 0x7BFF), std::mt19937(seed));
std::vector<uint16_t> fp16(state.range(0));
std::vector<float> fp32(state.range(0));
std::generate(fp16.begin(), fp16.end(),
[&rng]{ return fp16_alt_from_fp32_value(rng()); });
while (state.KeepRunning()) {
uint16_t* input = fp16.data();
benchmark::DoNotOptimize(input);
float* output = fp32.data();
const size_t n = state.range(0);
for (size_t i = 0; i < n; i += 8) {
const psimd_f32x2 data =
fp16_alt_to_fp32x2_psimd(
psimd_load_u16(&input[i]));
psimd_store_f32(&output[i], data.lo);
psimd_store_f32(&output[i + 4], data.hi);
}
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(fp16_alt_to_fp32x2_psimd)->RangeMultiplier(2)->Range(1<<10, 64<<20);
#endif
#if defined(__ARM_NEON_FP) && (__ARM_NEON_FP & 0x2) || defined(__aarch64__)
static void hardware_vcvt_f32_f16(benchmark::State& state) {
const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count();
auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed));
std::vector<uint16_t> fp16(state.range(0));
std::vector<float> fp32(state.range(0));
std::generate(fp16.begin(), fp16.end(),
[&rng]{ return fp16_ieee_from_fp32_value(rng()); });
while (state.KeepRunning()) {
uint16_t* input = fp16.data();
benchmark::DoNotOptimize(input);
float* output = fp32.data();
const size_t n = state.range(0);
#if defined(__aarch64__)
const unsigned int fpcr = __builtin_aarch64_get_fpcr();
/* Disable flush-to-zero (bit 24) and enable Alternative FP16 format (bit 26) */
__builtin_aarch64_set_fpcr((fpcr & 0xFEFFFFFFu) | 0x08000000u);
#else
unsigned int fpscr;
__asm__ __volatile__ ("VMRS %[fpscr], fpscr" : [fpscr] "=r" (fpscr));
/* Disable flush-to-zero (bit 24) and enable Alternative FP16 format (bit 26) */
__asm__ __volatile__ ("VMSR fpscr, %[fpscr]" :
: [fpscr] "r" ((fpscr & 0xFEFFFFFFu) | 0x08000000u));
#endif
for (size_t i = 0; i < n; i += 4) {
vst1q_f32(&output[i],
vcvt_f32_f16(
(float16x4_t) vld1_u16(&input[i])));
}
#if defined(__aarch64__)
__builtin_aarch64_set_fpcr(fpcr);
#else
__asm__ __volatile__ ("VMSR fpscr, %[fpscr]" :: [fpscr] "r" (fpscr));
#endif
benchmark::DoNotOptimize(output);
}
state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0)));
}
BENCHMARK(hardware_vcvt_f32_f16)->RangeMultiplier(2)->Range(1<<10, 64<<20);
#endif
BENCHMARK_MAIN();