|
|
|
|
|
|
|
|
|
|
|
#pragma once |
|
|
|
#include <gtest/gtest.h> |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <cstdlib> |
|
#include <limits> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <fp16/fp16.h> |
|
|
|
#include <xnnpack.h> |
|
#include <xnnpack/aligned-allocator.h> |
|
#include <xnnpack/pack.h> |
|
#include <xnnpack/microfnptr.h> |
|
#include <xnnpack/microparams-init.h> |
|
|
|
|
|
class ConvHWC2CHWMicrokernelTester { |
|
public: |
|
inline ConvHWC2CHWMicrokernelTester& output_channels_tile(uint32_t output_channels_tile) { |
|
this->output_channels_tile_ = output_channels_tile; |
|
return *this; |
|
} |
|
|
|
inline uint32_t output_channels_tile() const { |
|
return this->output_channels_tile_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding(uint32_t padding) { |
|
this->padding_top_ = padding; |
|
this->padding_right_ = padding; |
|
this->padding_bottom_ = padding; |
|
this->padding_left_ = padding; |
|
return *this; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_height(uint32_t padding_height) { |
|
this->padding_top_ = padding_height; |
|
this->padding_bottom_ = padding_height; |
|
return *this; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_width(uint32_t padding_width) { |
|
this->padding_right_ = padding_width; |
|
this->padding_left_ = padding_width; |
|
return *this; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_top(uint32_t padding_top) { |
|
this->padding_top_ = padding_top; |
|
return *this; |
|
} |
|
|
|
inline uint32_t padding_top() const { |
|
return this->padding_top_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_right(uint32_t padding_right) { |
|
this->padding_right_ = padding_right; |
|
return *this; |
|
} |
|
|
|
inline uint32_t padding_right() const { |
|
return this->padding_right_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_bottom(uint32_t padding_bottom) { |
|
this->padding_bottom_ = padding_bottom; |
|
return *this; |
|
} |
|
|
|
inline uint32_t padding_bottom() const { |
|
return this->padding_bottom_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& padding_left(uint32_t padding_left) { |
|
this->padding_left_ = padding_left; |
|
return *this; |
|
} |
|
|
|
inline uint32_t padding_left() const { |
|
return this->padding_left_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_size(uint32_t input_height, uint32_t input_width) { |
|
assert(input_height >= 1); |
|
assert(input_width >= 1); |
|
this->input_height_ = input_height; |
|
this->input_width_ = input_width; |
|
return *this; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_height(uint32_t input_height) { |
|
assert(input_height >= 1); |
|
this->input_height_ = input_height; |
|
return *this; |
|
} |
|
|
|
inline uint32_t input_height() const { |
|
return this->input_height_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_width(uint32_t input_width) { |
|
assert(input_width >= 1); |
|
this->input_width_ = input_width; |
|
return *this; |
|
} |
|
|
|
inline uint32_t input_width() const { |
|
return this->input_width_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& input_channels(size_t input_channels) { |
|
assert(input_channels >= 1); |
|
this->input_channels_ = input_channels; |
|
return *this; |
|
} |
|
|
|
inline size_t input_channels() const { |
|
return this->input_channels_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& output_channels(size_t output_channels) { |
|
assert(output_channels >= 1); |
|
this->output_channels_ = output_channels; |
|
return *this; |
|
} |
|
|
|
inline size_t output_channels() const { |
|
return this->output_channels_; |
|
} |
|
|
|
inline size_t packed_output_channels() const { |
|
return output_channels() % output_channels_tile() == 0 ? output_channels() : output_channels() / output_channels_tile() * output_channels_tile() + output_channels_tile(); |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& batch_size(size_t batch_size) { |
|
assert(batch_size >= 1); |
|
this->batch_size_ = batch_size; |
|
return *this; |
|
} |
|
|
|
inline size_t batch_size() const { |
|
return this->batch_size_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& kernel_size(uint32_t kernel_size) { |
|
assert(kernel_size >= 1); |
|
this->kernel_height_ = kernel_size; |
|
this->kernel_width_ = kernel_size; |
|
return *this; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& kernel_height(uint32_t kernel_height) { |
|
assert(kernel_height >= 1); |
|
this->kernel_height_ = kernel_height; |
|
return *this; |
|
} |
|
|
|
inline uint32_t kernel_height() const { |
|
return this->kernel_height_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& kernel_width(uint32_t kernel_width) { |
|
assert(kernel_width >= 1); |
|
this->kernel_width_ = kernel_width; |
|
return *this; |
|
} |
|
|
|
inline uint32_t kernel_width() const { |
|
return this->kernel_width_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& subsampling(uint32_t subsampling) { |
|
assert(subsampling >= 1); |
|
this->subsampling_height_ = subsampling; |
|
this->subsampling_width_ = subsampling; |
|
return *this; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& subsampling_height(uint32_t subsampling_height) { |
|
assert(subsampling_height >= 1); |
|
this->subsampling_height_ = subsampling_height; |
|
return *this; |
|
} |
|
|
|
inline uint32_t subsampling_height() const { |
|
return this->subsampling_height_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& subsampling_width(uint32_t subsampling_width) { |
|
assert(subsampling_width >= 1); |
|
this->subsampling_width_ = subsampling_width; |
|
return *this; |
|
} |
|
|
|
inline uint32_t subsampling_width() const { |
|
return this->subsampling_width_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& output_y_start(uint32_t output_y_start) { |
|
this->output_y_start_ = output_y_start; |
|
return *this; |
|
} |
|
|
|
inline uint32_t output_y_start() const { |
|
return this->output_y_start_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& output_y_end(uint32_t output_y_end) { |
|
this->output_y_end_ = output_y_end; |
|
return *this; |
|
} |
|
|
|
inline uint32_t output_y_end() const { |
|
if (this->output_y_end_ == std::numeric_limits<uint32_t>::max()) { |
|
return output_height(); |
|
} else { |
|
return this->output_y_end_; |
|
} |
|
} |
|
|
|
inline size_t input_pixel_stride() const { |
|
return input_channels(); |
|
} |
|
|
|
inline size_t output_pixel_stride() const { |
|
return output_channels(); |
|
} |
|
|
|
inline size_t output_height() const { |
|
const size_t padded_input_height = padding_top() + input_height() + padding_bottom(); |
|
if (padded_input_height < kernel_height()) { |
|
return 0; |
|
} else { |
|
return (padded_input_height - kernel_height()) / subsampling_height() + 1; |
|
} |
|
} |
|
|
|
inline size_t output_width() const { |
|
const size_t padded_input_width = padding_left() + input_width() + padding_right(); |
|
if (padded_input_width < kernel_width()) { |
|
return 0; |
|
} else { |
|
return (padded_input_width - kernel_width()) / subsampling_width() + 1; |
|
} |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& qmin(uint8_t qmin) { |
|
this->qmin_ = qmin; |
|
return *this; |
|
} |
|
|
|
inline uint8_t qmin() const { |
|
return this->qmin_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& qmax(uint8_t qmax) { |
|
this->qmax_ = qmax; |
|
return *this; |
|
} |
|
|
|
inline uint8_t qmax() const { |
|
return this->qmax_; |
|
} |
|
|
|
inline ConvHWC2CHWMicrokernelTester& iterations(size_t iterations) { |
|
this->iterations_ = iterations; |
|
return *this; |
|
} |
|
|
|
inline size_t iterations() const { |
|
return this->iterations_; |
|
} |
|
|
|
void Test(xnn_f32_conv_hwc2chw_ukernel_fn conv, xnn_init_f32_minmax_params_fn init_params) const { |
|
ASSERT_LT(output_y_start(), output_height()); |
|
ASSERT_LE(output_y_end(), output_height()); |
|
ASSERT_GT(output_y_end(), output_y_start()); |
|
ASSERT_GE(output_width(), 1); |
|
ASSERT_GE(output_height(), 1); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f); |
|
|
|
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + |
|
batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels())); |
|
std::vector<float> zero(XNN_EXTRA_BYTES / sizeof(float) + input_width() * input_channels()); |
|
std::vector<float> kernel(output_channels() * kernel_height() * kernel_width() * input_channels()); |
|
std::vector<float> bias(output_channels()); |
|
std::vector<float> output(batch_size() * output_channels() * output_height() * output_width()); |
|
std::vector<float> output_ref(batch_size() * output_channels() * output_height() * output_width()); |
|
std::vector<float, AlignedAllocator<float, 64>> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels()); |
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) { |
|
std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); |
|
std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); }); |
|
std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); |
|
std::fill(output.begin(), output.end(), nanf("")); |
|
std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); |
|
|
|
xnn_pack_f32_dconv_oki_w( |
|
output_channels(), |
|
input_channels(), |
|
output_channels_tile(), |
|
kernel_height(), kernel_width(), |
|
kernel.data(), bias.data(), packed_weights.data(), nullptr); |
|
|
|
|
|
for (size_t i = 0; i < batch_size(); i++) { |
|
for (size_t oy = 0; oy < output_height(); oy++) { |
|
for (size_t ox = 0; ox < output_width(); ox++) { |
|
for (size_t oc = 0; oc < output_channels(); oc++) { |
|
float acc = bias[oc]; |
|
for (size_t ky = 0; ky < kernel_height(); ky++) { |
|
const size_t iy = oy * subsampling_height() + ky - padding_top(); |
|
if (iy < input_height()) { |
|
for (size_t kx = 0; kx < kernel_width(); kx++) { |
|
const size_t ix = ox * subsampling_width() + kx - padding_left(); |
|
if (ix < input_width()) { |
|
for (size_t ic = 0; ic < input_channels(); ic++) { |
|
acc += |
|
input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic] * |
|
kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
output_ref[((i * output_channels() + oc) * output_height() + oy) * output_width() + ox] = acc; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
|
|
|
const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); |
|
const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); |
|
|
|
|
|
for (float& value : output_ref) { |
|
value = std::max(std::min(value, output_max), output_min); |
|
} |
|
|
|
|
|
xnn_f32_minmax_params params; |
|
init_params(¶ms, output_min, output_max); |
|
|
|
|
|
conv( |
|
input_height(), input_width(), |
|
output_y_start(), output_y_end(), |
|
input.data(), zero.data(), packed_weights.data(), output.data(), |
|
padding_top(), output_channels(), |
|
output_width() * sizeof(float), |
|
output_height() * output_width() * sizeof(float), |
|
¶ms); |
|
|
|
|
|
for (size_t i = 0; i < batch_size(); i++) { |
|
for (size_t y = output_y_start(); y < output_y_end(); y++) { |
|
for (size_t x = 0; x < output_width(); x++) { |
|
for (size_t c = 0; c < output_channels(); c++) { |
|
EXPECT_GE(output[((i * output_channels() + c) * output_height() + y) * output_width() + x], output_min) |
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c; |
|
EXPECT_LE(output[((i * output_channels() + c) * output_height() + y) * output_width() + x], output_max) |
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c; |
|
EXPECT_NEAR( |
|
output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x], |
|
output[((i * output_channels() + c) * output_height() + y) * output_width() + x], |
|
1.0e-4 * std::abs(output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x])) |
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void Test(xnn_f16_conv_hwc2chw_ukernel_fn conv, xnn_init_f16_minmax_params_fn init_params) const { |
|
ASSERT_LT(output_y_start(), output_height()); |
|
ASSERT_LE(output_y_end(), output_height()); |
|
ASSERT_GT(output_y_end(), output_y_start()); |
|
ASSERT_GE(output_width(), 1); |
|
ASSERT_GE(output_height(), 1); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
std::uniform_real_distribution<float> f32dist(0.1f, 1.0f); |
|
|
|
std::vector<uint16_t> input(XNN_EXTRA_BYTES / sizeof(uint16_t) + |
|
batch_size() * ((input_height() * input_width() - 1) * input_pixel_stride() + input_channels())); |
|
std::vector<uint16_t> zero(XNN_EXTRA_BYTES / sizeof(uint16_t) + input_width() * input_channels()); |
|
std::vector<uint16_t> kernel(output_channels() * kernel_height() * kernel_width() * input_channels()); |
|
std::vector<uint16_t> bias(output_channels()); |
|
std::vector<uint16_t> output(batch_size() * output_channels() * output_height() * output_width()); |
|
std::vector<float> output_ref(batch_size() * output_channels() * output_height() * output_width()); |
|
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_weights((input_channels() * kernel_height() * kernel_width() + 1) * packed_output_channels()); |
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) { |
|
std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
|
std::generate(kernel.begin(), kernel.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
|
std::generate(bias.begin(), bias.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); |
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) ); |
|
std::fill(packed_weights.begin(), packed_weights.end(), 0); |
|
|
|
xnn_pack_f16_dconv_oki_w( |
|
output_channels(), |
|
input_channels(), |
|
output_channels_tile(), |
|
kernel_height(), kernel_width(), |
|
kernel.data(), bias.data(), packed_weights.data(), nullptr); |
|
|
|
|
|
for (size_t i = 0; i < batch_size(); i++) { |
|
for (size_t oy = 0; oy < output_height(); oy++) { |
|
for (size_t ox = 0; ox < output_width(); ox++) { |
|
for (size_t oc = 0; oc < output_channels(); oc++) { |
|
float acc = fp16_ieee_to_fp32_value(bias[oc]); |
|
for (size_t ky = 0; ky < kernel_height(); ky++) { |
|
const size_t iy = oy * subsampling_height() + ky - padding_top(); |
|
if (iy < input_height()) { |
|
for (size_t kx = 0; kx < kernel_width(); kx++) { |
|
const size_t ix = ox * subsampling_width() + kx - padding_left(); |
|
if (ix < input_width()) { |
|
for (size_t ic = 0; ic < input_channels(); ic++) { |
|
acc += |
|
fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + ic]) * |
|
fp16_ieee_to_fp32_value(kernel[((oc * kernel_height() + ky) * kernel_width() + kx) * input_channels() + ic]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
output_ref[((i * output_channels() + oc) * output_height() + oy) * output_width() + ox] = acc; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); |
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); |
|
const float accumulated_range = accumulated_max - accumulated_min; |
|
const float output_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); |
|
const float output_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); |
|
|
|
|
|
for (float& value : output_ref) { |
|
value = std::max(std::min(value, output_max), output_min); |
|
} |
|
|
|
|
|
xnn_f16_minmax_params params; |
|
init_params(¶ms, fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max)); |
|
|
|
|
|
conv( |
|
input_height(), input_width(), |
|
output_y_start(), output_y_end(), |
|
input.data(), zero.data(), packed_weights.data(), output.data(), |
|
padding_top(), output_channels(), |
|
output_width() * sizeof(uint16_t), |
|
output_height() * output_width() * sizeof(uint16_t), |
|
¶ms); |
|
|
|
|
|
for (size_t i = 0; i < batch_size(); i++) { |
|
for (size_t y = output_y_start(); y < output_y_end(); y++) { |
|
for (size_t x = 0; x < output_width(); x++) { |
|
for (size_t c = 0; c < output_channels(); c++) { |
|
EXPECT_GE(fp16_ieee_to_fp32_value(output[((i * output_channels() + c) * output_height() + y) * output_width() + x]), output_min) |
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c; |
|
EXPECT_LE(fp16_ieee_to_fp32_value(output[((i * output_channels() + c) * output_height() + y) * output_width() + x]), output_max) |
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c; |
|
EXPECT_NEAR( |
|
output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x], |
|
fp16_ieee_to_fp32_value(output[((i * output_channels() + c) * output_height() + y) * output_width() + x]), |
|
std::max(1.0e-4f, 1.0e-2f * std::abs(output_ref[((i * output_channels() + c) * output_height() + y) * output_width() + x]))) |
|
<< "(x, y) = (" << x << ", " << y << "), channel = " << c; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
private: |
|
uint32_t padding_top_{0}; |
|
uint32_t padding_right_{0}; |
|
uint32_t padding_bottom_{0}; |
|
uint32_t padding_left_{0}; |
|
size_t input_height_{1}; |
|
size_t input_width_{1}; |
|
size_t input_channels_{1}; |
|
size_t output_channels_{1}; |
|
uint32_t output_channels_tile_{1}; |
|
size_t batch_size_{1}; |
|
uint32_t kernel_height_{1}; |
|
uint32_t kernel_width_{1}; |
|
uint32_t subsampling_height_{1}; |
|
uint32_t subsampling_width_{1}; |
|
uint32_t output_y_start_{0}; |
|
uint32_t output_y_end_{std::numeric_limits<uint32_t>::max()}; |
|
uint8_t qmin_{0}; |
|
uint8_t qmax_{255}; |
|
size_t iterations_{1}; |
|
}; |
|
|