|
|
|
|
|
|
|
|
|
|
|
$assert BATCH_TILE % 8 == 0 |
|
$assert BATCH_TILE >= 8 |
|
$assert DIV_ALGO in ["div", "rcp"] |
|
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
$SIMD_TILE = BATCH_TILE |
|
#include <assert.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/common.h> |
|
#include <xnnpack/intrinsics-polyfill.h> |
|
#include <xnnpack/vunary.h> |
|
|
|
|
|
void xnn_f16_vsigmoid_ukernel__avx2_rr1_p2_${DIV_ALGO}_x${BATCH_TILE}( |
|
size_t batch, |
|
const void* input, |
|
void* output, |
|
const union xnn_f16_sigmoid_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(batch != 0); |
|
assert(batch % sizeof(uint16_t) == 0); |
|
assert(input != NULL); |
|
assert(output != NULL); |
|
|
|
const __m256 vsign_mask = _mm256_load_ps(params->avx2_rr1_p2.sign_mask); |
|
const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p2.magic_bias); |
|
const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p2.log2e); |
|
const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p2.minus_ln2); |
|
const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p2.c2); |
|
const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p2.c1); |
|
const __m256 vone = _mm256_load_ps(params->avx2_rr1_p2.one); |
|
const __m256 vdenorm_cutoff = _mm256_load_ps(params->avx2_rr1_p2.denorm_cutoff); |
|
|
|
const uint16_t* i = (const uint16_t*) input; |
|
uint16_t* o = (uint16_t*) output; |
|
$if BATCH_TILE > 8: |
|
for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) { |
|
const __m256 vx${ABC[0]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
$for N in range(1, SIMD_TILE): |
|
const __m256 vx${ABC[N]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8}))); |
|
i += ${BATCH_TILE}; |
|
|
|
$for N in range(SIMD_TILE): |
|
const __m256 vz${ABC[N]} = _mm256_or_ps(vx${ABC[N]}, vsign_mask); |
|
|
|
$for N in range(SIMD_TILE): |
|
__m256 vn${ABC[N]} = _mm256_fmadd_ps(vz${ABC[N]}, vlog2e, vmagic_bias); |
|
|
|
$for N in range(SIMD_TILE): |
|
const __m256 vs${ABC[N]} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${ABC[N]}), 23)); |
|
|
|
$for N in range(SIMD_TILE): |
|
vn${ABC[N]} = _mm256_sub_ps(vn${ABC[N]}, vmagic_bias); |
|
|
|
$for N in range(SIMD_TILE): |
|
__m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2, vz${ABC[N]}); |
|
|
|
$for N in range(SIMD_TILE): |
|
const __m256 vp${ABC[N]} = _mm256_fmadd_ps(vc2, vt${ABC[N]}, vc1); |
|
|
|
$for N in range(SIMD_TILE): |
|
vt${ABC[N]} = _mm256_mul_ps(vt${ABC[N]}, vs${ABC[N]}); |
|
|
|
$for N in range(SIMD_TILE): |
|
const __m256 ve${ABC[N]} = _mm256_fmadd_ps(vt${ABC[N]}, vp${ABC[N]}, vs${ABC[N]}); |
|
|
|
$for N in range(SIMD_TILE): |
|
const __m256 vd${ABC[N]} = _mm256_add_ps(ve${ABC[N]}, vone); |
|
|
|
$if DIV_ALGO == "div": |
|
$for N in range(SIMD_TILE): |
|
__m256 vf${ABC[N]} = _mm256_div_ps(ve${ABC[N]}, vd${ABC[N]}); |
|
$else: |
|
$for N in range(SIMD_TILE): |
|
const __m256 vr${ABC[N]} = _mm256_rcp_ps(vd${ABC[N]}); |
|
|
|
$for N in range(SIMD_TILE): |
|
__m256 vf${ABC[N]} = _mm256_mul_ps(ve${ABC[N]}, vr${ABC[N]}); |
|
|
|
$for N in range(SIMD_TILE): |
|
vf${ABC[N]} = _mm256_andnot_ps(_mm256_cmp_ps(vz${ABC[N]}, vdenorm_cutoff, _CMP_LT_OS), vf${ABC[N]}); |
|
|
|
$for N in range(SIMD_TILE): |
|
vf${ABC[N]} = _mm256_blendv_ps(_mm256_sub_ps(vone, vf${ABC[N]}), vf${ABC[N]}, vx${ABC[N]}); |
|
|
|
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf${ABC[0]}, _MM_FROUND_TO_NEAREST_INT)); |
|
$for N in range(1, SIMD_TILE): |
|
_mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vf${ABC[N]}, _MM_FROUND_TO_NEAREST_INT)); |
|
o += ${BATCH_TILE}; |
|
} |
|
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) { |
|
const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
i += 8; |
|
|
|
const __m256 vz = _mm256_or_ps(vx, vsign_mask); |
|
|
|
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
|
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
|
vn = _mm256_sub_ps(vn, vmagic_bias); |
|
|
|
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
|
|
|
const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1); |
|
vt = _mm256_mul_ps(vt, vs); |
|
const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); |
|
|
|
const __m256 vd = _mm256_add_ps(ve, vone); |
|
$if DIV_ALGO == "div": |
|
__m256 vf = _mm256_div_ps(ve, vd); |
|
$else: |
|
const __m256 vr = _mm256_rcp_ps(vd); |
|
__m256 vf = _mm256_mul_ps(ve, vr); |
|
|
|
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); |
|
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); |
|
|
|
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT)); |
|
o += 8; |
|
} |
|
if XNN_UNLIKELY(batch != 0) { |
|
assert(batch >= 1 * sizeof(uint16_t)); |
|
assert(batch <= 7 * sizeof(uint16_t)); |
|
const __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
|
|
const __m256 vz = _mm256_or_ps(vx, vsign_mask); |
|
|
|
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
|
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
|
vn = _mm256_sub_ps(vn, vmagic_bias); |
|
|
|
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
|
|
|
const __m256 vp = _mm256_fmadd_ps(vc2, vt, vc1); |
|
vt = _mm256_mul_ps(vt, vs); |
|
const __m256 ve = _mm256_fmadd_ps(vt, vp, vs); |
|
|
|
const __m256 vd = _mm256_add_ps(ve, vone); |
|
$if DIV_ALGO == "div": |
|
__m256 vf = _mm256_div_ps(ve, vd); |
|
$else: |
|
const __m256 vr = _mm256_rcp_ps(vd); |
|
__m256 vf = _mm256_mul_ps(ve, vr); |
|
|
|
vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf); |
|
vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx); |
|
|
|
__m128i vh = _mm256_cvtps_ph(vf, _MM_FROUND_TO_NEAREST_INT); |
|
if (batch & (4 * sizeof(uint16_t))) { |
|
_mm_storel_epi64((__m128i*) o, vh); |
|
vh = _mm_unpackhi_epi64(vh, vh); |
|
o += 4; |
|
} |
|
if (batch & (2 * sizeof(uint16_t))) { |
|
_mm_storeu_si32(o, vh); |
|
vh = _mm_srli_epi64(vh, 32); |
|
o += 2; |
|
} |
|
if (batch & (1 * sizeof(uint16_t))) { |
|
*o = (uint16_t) _mm_extract_epi16(vh, 0); |
|
} |
|
} |
|
} |
|
|