|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <assert.h> |
|
|
|
#include <immintrin.h> |
|
|
|
#include <xnnpack/common.h> |
|
#include <xnnpack/intrinsics-polyfill.h> |
|
#include <xnnpack/vunary.h> |
|
|
|
|
|
void xnn_f16_velu_ukernel__avx2_rr1_p3_x8( |
|
size_t batch, |
|
const void* input, |
|
void* output, |
|
const union xnn_f16_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) |
|
{ |
|
assert(batch != 0); |
|
assert(batch % sizeof(uint16_t) == 0); |
|
assert(input != NULL); |
|
assert(output != NULL); |
|
|
|
const __m256 vprescale = _mm256_load_ps(params->avx2_rr1_p3.prescale); |
|
const __m256 vsat_cutoff = _mm256_load_ps(params->avx2_rr1_p3.sat_cutoff); |
|
const __m256 vmagic_bias = _mm256_load_ps(params->avx2_rr1_p3.magic_bias); |
|
const __m256 vlog2e = _mm256_load_ps(params->avx2_rr1_p3.log2e); |
|
const __m256 vminus_ln2 = _mm256_load_ps(params->avx2_rr1_p3.minus_ln2); |
|
const __m256 vc3 = _mm256_load_ps(params->avx2_rr1_p3.c3); |
|
const __m256 vc2 = _mm256_load_ps(params->avx2_rr1_p3.c2); |
|
const __m256 vc1 = _mm256_load_ps(params->avx2_rr1_p3.c1); |
|
const __m256 valpha = _mm256_load_ps(params->avx2_rr1_p3.alpha); |
|
const __m256 vbeta = _mm256_load_ps(params->avx2_rr1_p3.beta); |
|
|
|
const uint16_t* i = (const uint16_t*) input; |
|
uint16_t* o = (uint16_t*) output; |
|
for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) { |
|
__m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
i += 8; |
|
|
|
const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); |
|
|
|
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
|
__m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
|
vn = _mm256_sub_ps(vn, vmagic_bias); |
|
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
|
|
|
__m256 vp = _mm256_fmadd_ps(vc3, vt, vc2); |
|
vp = _mm256_fmadd_ps(vp, vt, vc1); |
|
vt = _mm256_mul_ps(vt, valpha); |
|
vt = _mm256_mul_ps(vt, vs); |
|
vs = _mm256_fmsub_ps(vs, valpha, valpha); |
|
const __m256 ve = _mm256_fmadd_ps(vp, vt, vs); |
|
vx = _mm256_mul_ps(vx, vbeta); |
|
const __m256 vy = _mm256_blendv_ps(vx, ve, vx); |
|
|
|
_mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT)); |
|
o += 8; |
|
} |
|
if XNN_UNLIKELY(batch != 0) { |
|
assert(batch >= 1 * sizeof(uint16_t)); |
|
assert(batch <= 7 * sizeof(uint16_t)); |
|
__m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); |
|
|
|
const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); |
|
|
|
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); |
|
__m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); |
|
vn = _mm256_sub_ps(vn, vmagic_bias); |
|
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); |
|
|
|
__m256 vp = _mm256_fmadd_ps(vc3, vt, vc2); |
|
vp = _mm256_fmadd_ps(vp, vt, vc1); |
|
vt = _mm256_mul_ps(vt, valpha); |
|
vt = _mm256_mul_ps(vt, vs); |
|
vs = _mm256_fmsub_ps(vs, valpha, valpha); |
|
const __m256 ve = _mm256_fmadd_ps(vp, vt, vs); |
|
vx = _mm256_mul_ps(vx, vbeta); |
|
const __m256 vy = _mm256_blendv_ps(vx, ve, vx); |
|
|
|
__m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT); |
|
if (batch & (4 * sizeof(uint16_t))) { |
|
_mm_storel_epi64((__m128i*) o, vh); |
|
vh = _mm_unpackhi_epi64(vh, vh); |
|
o += 4; |
|
} |
|
if (batch & (2 * sizeof(uint16_t))) { |
|
_mm_storeu_si32(o, vh); |
|
vh = _mm_srli_epi64(vh, 32); |
|
o += 2; |
|
} |
|
if (batch & (1 * sizeof(uint16_t))) { |
|
*o = (uint16_t) _mm_extract_epi16(vh, 0); |
|
} |
|
} |
|
} |
|
|