|
|
|
|
|
|
|
|
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cmath> |
|
#include <functional> |
|
#include <limits> |
|
#include <memory> |
|
#include <random> |
|
#include <vector> |
|
|
|
#include <fp16/fp16.h> |
|
|
|
#include <xnnpack.h> |
|
|
|
#include <benchmark/benchmark.h> |
|
#include "bench/utils.h" |
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
#include "flatbuffers/include/flatbuffers/flatbuffers.h" |
|
#include "tensorflow/lite/interpreter.h" |
|
#include "tensorflow/lite/kernels/register.h" |
|
#include "tensorflow/lite/model.h" |
|
#include "tensorflow/lite/schema/schema_generated.h" |
|
#include "tensorflow/lite/version.h" |
|
#endif |
|
|
|
|
|
static void xnnpack_abs_f16(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng)); |
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
|
|
|
std::vector<uint16_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
|
std::vector<uint16_t> output(batch_size); |
|
std::generate(input.begin(), input.end(), std::ref(f16rng)); |
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) ); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t abs_op = nullptr; |
|
status = xnn_create_abs_nc_f16( |
|
1 , 1 , 1 , |
|
0 , &abs_op); |
|
if (status != xnn_status_success || abs_op == nullptr) { |
|
state.SkipWithError("failed to create Abs operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_abs_nc_f16(abs_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape Abs operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_abs_nc_f16(abs_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup Abs operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(abs_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run Abs operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(abs_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete Abs operator"); |
|
return; |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(uint16_t); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
static void xnnpack_abs_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng)); |
|
|
|
std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
|
std::vector<float> output(batch_size); |
|
std::generate(input.begin(), input.end(), std::ref(f32rng)); |
|
std::fill(output.begin(), output.end(), std::nanf("")); |
|
|
|
xnn_status status = xnn_initialize(nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to initialize XNNPACK"); |
|
return; |
|
} |
|
|
|
xnn_operator_t abs_op = nullptr; |
|
status = xnn_create_abs_nc_f32( |
|
1 , 1 , 1 , |
|
0 , &abs_op); |
|
if (status != xnn_status_success || abs_op == nullptr) { |
|
state.SkipWithError("failed to create Abs operator"); |
|
return; |
|
} |
|
|
|
status = xnn_reshape_abs_nc_f32(abs_op, batch_size, nullptr); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to reshape Abs operator"); |
|
return; |
|
} |
|
|
|
status = xnn_setup_abs_nc_f32(abs_op, input.data(), output.data()); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to setup Abs operator"); |
|
return; |
|
} |
|
|
|
for (auto _ : state) { |
|
status = xnn_run_operator(abs_op, nullptr ); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to run Abs operator"); |
|
return; |
|
} |
|
} |
|
|
|
status = xnn_delete_operator(abs_op); |
|
if (status != xnn_status_success) { |
|
state.SkipWithError("failed to delete Abs operator"); |
|
return; |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(float); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
} |
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
static void tflite_abs_f32(benchmark::State& state) { |
|
const size_t batch_size = state.range(0); |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng)); |
|
|
|
flatbuffers::FlatBufferBuilder builder; |
|
const flatbuffers::Offset<tflite::OperatorCode> operator_code = |
|
CreateOperatorCode(builder, tflite::BuiltinOperator_ABS); |
|
|
|
const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
|
tflite::CreateBuffer(builder, builder.CreateVector({})), |
|
}}; |
|
|
|
const std::array<int32_t, 1> shape{{ |
|
static_cast<int32_t>(batch_size) |
|
}}; |
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT32), |
|
tflite::CreateTensor(builder, |
|
builder.CreateVector<int32_t>(shape.data(), shape.size()), |
|
tflite::TensorType_FLOAT32), |
|
}}; |
|
|
|
const std::array<int32_t, 1> op_inputs{{ 0 }}; |
|
const std::array<int32_t, 1> op_outputs{{ 1 }}; |
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator( |
|
builder, |
|
0 , |
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
|
|
|
const std::array<int32_t, 1> graph_inputs{{ 0 }}; |
|
const std::array<int32_t, 1> graph_outputs{{ 1 }}; |
|
const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
|
builder, |
|
builder.CreateVector(tensors.data(), tensors.size()), |
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
|
builder.CreateVector(&op, 1)); |
|
|
|
const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
|
TFLITE_SCHEMA_VERSION, |
|
builder.CreateVector(&operator_code, 1), |
|
builder.CreateVector(&subgraph, 1), |
|
builder.CreateString("Abs model"), |
|
builder.CreateVector(buffers.data(), buffers.size())); |
|
|
|
builder.Finish(model_buffer); |
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
|
tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
|
std::unique_ptr<tflite::Interpreter> interpreter; |
|
if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
|
state.SkipWithError("failed to create TFLite interpreter"); |
|
return; |
|
} |
|
interpreter->SetNumThreads(1); |
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) { |
|
state.SkipWithError("failed to allocate tensors"); |
|
return; |
|
} |
|
|
|
std::generate( |
|
interpreter->typed_tensor<float>(0), |
|
interpreter->typed_tensor<float>(0) + batch_size, |
|
std::ref(f32rng)); |
|
|
|
for (auto _ : state) { |
|
if (interpreter->Invoke() != kTfLiteOk) { |
|
state.SkipWithError("failed to invoke TFLite interpreter"); |
|
return; |
|
} |
|
} |
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
|
if (cpu_frequency != 0) { |
|
state.counters["cpufreq"] = cpu_frequency; |
|
} |
|
|
|
state.counters["elements"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
|
|
|
const size_t bytes_per_iteration = 2 * batch_size * sizeof(float); |
|
state.counters["bytes"] = |
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
|
|
|
interpreter.reset(); |
|
} |
|
#endif |
|
|
|
BENCHMARK(xnnpack_abs_f16) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>) |
|
->UseRealTime(); |
|
BENCHMARK(xnnpack_abs_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>) |
|
->UseRealTime(); |
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE |
|
BENCHMARK(tflite_abs_f32) |
|
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>) |
|
->UseRealTime(); |
|
#endif |
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN |
|
BENCHMARK_MAIN(); |
|
#endif |
|
|