|
|
|
|
|
|
|
|
|
|
|
#include <xnnpack.h> |
|
|
|
#include <array> |
|
#include <algorithm> |
|
#include <functional> |
|
#include <iostream> |
|
#include <limits> |
|
#include <random> |
|
|
|
#include <xnnpack/cache.h> |
|
#include <xnnpack/models.h> |
|
|
|
#include <fp16/fp16.h> |
|
|
|
namespace models { |
|
|
|
ExecutionPlan FP16SparseMobileNetV3Large(float sparsity, pthreadpool_t threadpool) { |
|
alignas(16) static std::array<uint16_t, 150528 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v0; |
|
alignas(16) static std::array<uint16_t, 200704 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v1; |
|
alignas(16) static std::array<uint16_t, 200704 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v2; |
|
alignas(16) static std::array<uint16_t, 200704 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v3; |
|
alignas(16) static std::array<uint16_t, 200704 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v4; |
|
alignas(16) static std::array<uint16_t, 200704 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v5; |
|
alignas(16) static std::array<uint16_t, 802816 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v6; |
|
alignas(16) static std::array<uint16_t, 200704 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v7; |
|
alignas(16) static std::array<uint16_t, 75264 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v8; |
|
alignas(16) static std::array<uint16_t, 225792 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v9; |
|
alignas(16) static std::array<uint16_t, 225792 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v10; |
|
alignas(16) static std::array<uint16_t, 75264 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v11; |
|
alignas(16) static std::array<uint16_t, 75264 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v12; |
|
alignas(16) static std::array<uint16_t, 225792 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v13; |
|
alignas(16) static std::array<uint16_t, 56448 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v14; |
|
alignas(16) static std::array<uint16_t, 72 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v15; |
|
alignas(16) static std::array<uint16_t, 24 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v16; |
|
alignas(16) static std::array<uint16_t, 72 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v17; |
|
alignas(16) static std::array<uint16_t, 56448 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v18; |
|
alignas(16) static std::array<uint16_t, 31360 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v19; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v20; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v21; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v22; |
|
alignas(16) static std::array<uint16_t, 32 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v23; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v24; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v25; |
|
alignas(16) static std::array<uint16_t, 31360 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v26; |
|
alignas(16) static std::array<uint16_t, 31360 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v27; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v28; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v29; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v30; |
|
alignas(16) static std::array<uint16_t, 32 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v31; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v32; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v33; |
|
alignas(16) static std::array<uint16_t, 31360 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v34; |
|
alignas(16) static std::array<uint16_t, 31360 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v35; |
|
alignas(16) static std::array<uint16_t, 188160 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v36; |
|
alignas(16) static std::array<uint16_t, 188160 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v37; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v38; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v39; |
|
alignas(16) static std::array<uint16_t, 15680 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v40; |
|
alignas(16) static std::array<uint16_t, 39200 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v41; |
|
alignas(16) static std::array<uint16_t, 39200 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v42; |
|
alignas(16) static std::array<uint16_t, 39200 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v43; |
|
alignas(16) static std::array<uint16_t, 39200 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v44; |
|
alignas(16) static std::array<uint16_t, 15680 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v45; |
|
alignas(16) static std::array<uint16_t, 15680 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v46; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v47; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v48; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v49; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v50; |
|
alignas(16) static std::array<uint16_t, 15680 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v51; |
|
alignas(16) static std::array<uint16_t, 15680 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v52; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v53; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v54; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v55; |
|
alignas(16) static std::array<uint16_t, 36064 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v56; |
|
alignas(16) static std::array<uint16_t, 15680 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v57; |
|
alignas(16) static std::array<uint16_t, 15680 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v58; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v59; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v60; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v61; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v62; |
|
alignas(16) static std::array<uint16_t, 480 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v63; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v64; |
|
alignas(16) static std::array<uint16_t, 480 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v65; |
|
alignas(16) static std::array<uint16_t, 94080 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v66; |
|
alignas(16) static std::array<uint16_t, 21952 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v67; |
|
alignas(16) static std::array<uint16_t, 131712 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v68; |
|
alignas(16) static std::array<uint16_t, 131712 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v69; |
|
alignas(16) static std::array<uint16_t, 131712 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v70; |
|
alignas(16) static std::array<uint16_t, 131712 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v71; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v72; |
|
alignas(16) static std::array<uint16_t, 168 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v73; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v74; |
|
alignas(16) static std::array<uint16_t, 131712 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v75; |
|
alignas(16) static std::array<uint16_t, 21952 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v76; |
|
alignas(16) static std::array<uint16_t, 21952 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v77; |
|
alignas(16) static std::array<uint16_t, 131712 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v78; |
|
alignas(16) static std::array<uint16_t, 131712 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v79; |
|
alignas(16) static std::array<uint16_t, 32928 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v80; |
|
alignas(16) static std::array<uint16_t, 32928 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v81; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v82; |
|
alignas(16) static std::array<uint16_t, 168 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v83; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v84; |
|
alignas(16) static std::array<uint16_t, 32928 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v85; |
|
alignas(16) static std::array<uint16_t, 7840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v86; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v87; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v88; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v89; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v90; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v91; |
|
alignas(16) static std::array<uint16_t, 240 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v92; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v93; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v94; |
|
alignas(16) static std::array<uint16_t, 7840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v95; |
|
alignas(16) static std::array<uint16_t, 7840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v96; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v97; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v98; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v99; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v100; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v101; |
|
alignas(16) static std::array<uint16_t, 240 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v102; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v103; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v104; |
|
alignas(16) static std::array<uint16_t, 7840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v105; |
|
alignas(16) static std::array<uint16_t, 7840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v106; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v107; |
|
alignas(16) static std::array<uint16_t, 47040 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v108; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v109; |
|
alignas(16) static std::array<uint16_t, 1280 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v110; |
|
alignas(16) static std::array<uint16_t, 1280 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v111; |
|
alignas(16) static std::array<uint16_t, 1280 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v112; |
|
alignas(16) static std::array<uint16_t, 1001 + XNN_EXTRA_BYTES / sizeof(uint16_t)> v113; |
|
alignas(16) static std::array<uint16_t, 432 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w114; |
|
alignas(16) static std::array<uint16_t, 16 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w115; |
|
alignas(16) static std::array<uint16_t, 144 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w116; |
|
alignas(16) static std::array<uint16_t, 16 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w117; |
|
alignas(16) static std::array<uint16_t, 256 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w118; |
|
alignas(16) static std::array<uint16_t, 16 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w119; |
|
alignas(16) static std::array<uint16_t, 1024 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w120; |
|
alignas(16) static std::array<uint16_t, 64 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w121; |
|
alignas(16) static std::array<uint16_t, 576 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w122; |
|
alignas(16) static std::array<uint16_t, 64 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w123; |
|
alignas(16) static std::array<uint16_t, 1536 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w124; |
|
alignas(16) static std::array<uint16_t, 24 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w125; |
|
alignas(16) static std::array<uint16_t, 1728 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w126; |
|
alignas(16) static std::array<uint16_t, 72 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w127; |
|
alignas(16) static std::array<uint16_t, 648 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w128; |
|
alignas(16) static std::array<uint16_t, 72 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w129; |
|
alignas(16) static std::array<uint16_t, 1728 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w130; |
|
alignas(16) static std::array<uint16_t, 24 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w131; |
|
alignas(16) static std::array<uint16_t, 1728 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w132; |
|
alignas(16) static std::array<uint16_t, 72 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w133; |
|
alignas(16) static std::array<uint16_t, 1800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w134; |
|
alignas(16) static std::array<uint16_t, 72 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w135; |
|
alignas(16) static std::array<uint16_t, 1728 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w136; |
|
alignas(16) static std::array<uint16_t, 24 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w137; |
|
alignas(16) static std::array<uint16_t, 1728 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w138; |
|
alignas(16) static std::array<uint16_t, 72 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w139; |
|
alignas(16) static std::array<uint16_t, 2880 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w140; |
|
alignas(16) static std::array<uint16_t, 40 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w141; |
|
alignas(16) static std::array<uint16_t, 4800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w142; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w143; |
|
alignas(16) static std::array<uint16_t, 3000 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w144; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w145; |
|
alignas(16) static std::array<uint16_t, 3840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w146; |
|
alignas(16) static std::array<uint16_t, 32 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w147; |
|
alignas(16) static std::array<uint16_t, 3840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w148; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w149; |
|
alignas(16) static std::array<uint16_t, 4800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w150; |
|
alignas(16) static std::array<uint16_t, 40 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w151; |
|
alignas(16) static std::array<uint16_t, 4800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w152; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w153; |
|
alignas(16) static std::array<uint16_t, 3000 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w154; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w155; |
|
alignas(16) static std::array<uint16_t, 3840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w156; |
|
alignas(16) static std::array<uint16_t, 32 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w157; |
|
alignas(16) static std::array<uint16_t, 3840 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w158; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w159; |
|
alignas(16) static std::array<uint16_t, 4800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w160; |
|
alignas(16) static std::array<uint16_t, 40 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w161; |
|
alignas(16) static std::array<uint16_t, 9600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w162; |
|
alignas(16) static std::array<uint16_t, 240 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w163; |
|
alignas(16) static std::array<uint16_t, 2160 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w164; |
|
alignas(16) static std::array<uint16_t, 240 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w165; |
|
alignas(16) static std::array<uint16_t, 19200 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w166; |
|
alignas(16) static std::array<uint16_t, 80 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w167; |
|
alignas(16) static std::array<uint16_t, 16000 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w168; |
|
alignas(16) static std::array<uint16_t, 200 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w169; |
|
alignas(16) static std::array<uint16_t, 1800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w170; |
|
alignas(16) static std::array<uint16_t, 200 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w171; |
|
alignas(16) static std::array<uint16_t, 16000 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w172; |
|
alignas(16) static std::array<uint16_t, 80 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w173; |
|
alignas(16) static std::array<uint16_t, 14720 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w174; |
|
alignas(16) static std::array<uint16_t, 184 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w175; |
|
alignas(16) static std::array<uint16_t, 1656 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w176; |
|
alignas(16) static std::array<uint16_t, 184 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w177; |
|
alignas(16) static std::array<uint16_t, 14720 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w178; |
|
alignas(16) static std::array<uint16_t, 80 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w179; |
|
alignas(16) static std::array<uint16_t, 14720 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w180; |
|
alignas(16) static std::array<uint16_t, 184 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w181; |
|
alignas(16) static std::array<uint16_t, 1656 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w182; |
|
alignas(16) static std::array<uint16_t, 184 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w183; |
|
alignas(16) static std::array<uint16_t, 14720 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w184; |
|
alignas(16) static std::array<uint16_t, 80 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w185; |
|
alignas(16) static std::array<uint16_t, 38400 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w186; |
|
alignas(16) static std::array<uint16_t, 480 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w187; |
|
alignas(16) static std::array<uint16_t, 4320 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w188; |
|
alignas(16) static std::array<uint16_t, 480 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w189; |
|
alignas(16) static std::array<uint16_t, 57600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w190; |
|
alignas(16) static std::array<uint16_t, 120 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w191; |
|
alignas(16) static std::array<uint16_t, 57600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w192; |
|
alignas(16) static std::array<uint16_t, 480 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w193; |
|
alignas(16) static std::array<uint16_t, 53760 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w194; |
|
alignas(16) static std::array<uint16_t, 112 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w195; |
|
alignas(16) static std::array<uint16_t, 75264 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w196; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w197; |
|
alignas(16) static std::array<uint16_t, 6048 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w198; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w199; |
|
alignas(16) static std::array<uint16_t, 112896 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w200; |
|
alignas(16) static std::array<uint16_t, 168 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w201; |
|
alignas(16) static std::array<uint16_t, 112896 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w202; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w203; |
|
alignas(16) static std::array<uint16_t, 75264 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w204; |
|
alignas(16) static std::array<uint16_t, 112 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w205; |
|
alignas(16) static std::array<uint16_t, 75264 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w206; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w207; |
|
alignas(16) static std::array<uint16_t, 16800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w208; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w209; |
|
alignas(16) static std::array<uint16_t, 112896 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w210; |
|
alignas(16) static std::array<uint16_t, 168 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w211; |
|
alignas(16) static std::array<uint16_t, 112896 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w212; |
|
alignas(16) static std::array<uint16_t, 672 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w213; |
|
alignas(16) static std::array<uint16_t, 107520 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w214; |
|
alignas(16) static std::array<uint16_t, 160 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w215; |
|
alignas(16) static std::array<uint16_t, 153600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w216; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w217; |
|
alignas(16) static std::array<uint16_t, 24000 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w218; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w219; |
|
alignas(16) static std::array<uint16_t, 230400 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w220; |
|
alignas(16) static std::array<uint16_t, 240 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w221; |
|
alignas(16) static std::array<uint16_t, 230400 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w222; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w223; |
|
alignas(16) static std::array<uint16_t, 153600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w224; |
|
alignas(16) static std::array<uint16_t, 160 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w225; |
|
alignas(16) static std::array<uint16_t, 153600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w226; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w227; |
|
alignas(16) static std::array<uint16_t, 24000 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w228; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w229; |
|
alignas(16) static std::array<uint16_t, 230400 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w230; |
|
alignas(16) static std::array<uint16_t, 240 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w231; |
|
alignas(16) static std::array<uint16_t, 230400 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w232; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w233; |
|
alignas(16) static std::array<uint16_t, 153600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w234; |
|
alignas(16) static std::array<uint16_t, 160 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w235; |
|
alignas(16) static std::array<uint16_t, 153600 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w236; |
|
alignas(16) static std::array<uint16_t, 960 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w237; |
|
alignas(16) static std::array<uint16_t, 1228800 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w238; |
|
alignas(16) static std::array<uint16_t, 1280 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w239; |
|
alignas(16) static std::array<uint16_t, 1281280 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w240; |
|
alignas(16) static std::array<uint16_t, 1001 + XNN_EXTRA_BYTES / sizeof(uint16_t)> w241; |
|
|
|
std::random_device random_device; |
|
auto rng = std::mt19937(random_device()); |
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, +1.0f), std::ref(rng)); |
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
|
std::generate(v0.begin(), v0.end(), std::ref(f16rng)); |
|
std::generate(v1.begin(), v1.end(), std::ref(f16rng)); |
|
std::generate(v2.begin(), v2.end(), std::ref(f16rng)); |
|
std::generate(v3.begin(), v3.end(), std::ref(f16rng)); |
|
std::generate(v4.begin(), v4.end(), std::ref(f16rng)); |
|
std::generate(v5.begin(), v5.end(), std::ref(f16rng)); |
|
std::generate(v6.begin(), v6.end(), std::ref(f16rng)); |
|
std::generate(v7.begin(), v7.end(), std::ref(f16rng)); |
|
std::generate(v8.begin(), v8.end(), std::ref(f16rng)); |
|
std::generate(v9.begin(), v9.end(), std::ref(f16rng)); |
|
std::generate(v10.begin(), v10.end(), std::ref(f16rng)); |
|
std::generate(v11.begin(), v11.end(), std::ref(f16rng)); |
|
std::generate(v12.begin(), v12.end(), std::ref(f16rng)); |
|
std::generate(v13.begin(), v13.end(), std::ref(f16rng)); |
|
std::generate(v14.begin(), v14.end(), std::ref(f16rng)); |
|
std::generate(v15.begin(), v15.end(), std::ref(f16rng)); |
|
std::generate(v16.begin(), v16.end(), std::ref(f16rng)); |
|
std::generate(v17.begin(), v17.end(), std::ref(f16rng)); |
|
std::generate(v18.begin(), v18.end(), std::ref(f16rng)); |
|
std::generate(v19.begin(), v19.end(), std::ref(f16rng)); |
|
std::generate(v20.begin(), v20.end(), std::ref(f16rng)); |
|
std::generate(v21.begin(), v21.end(), std::ref(f16rng)); |
|
std::generate(v22.begin(), v22.end(), std::ref(f16rng)); |
|
std::generate(v23.begin(), v23.end(), std::ref(f16rng)); |
|
std::generate(v24.begin(), v24.end(), std::ref(f16rng)); |
|
std::generate(v25.begin(), v25.end(), std::ref(f16rng)); |
|
std::generate(v26.begin(), v26.end(), std::ref(f16rng)); |
|
std::generate(v27.begin(), v27.end(), std::ref(f16rng)); |
|
std::generate(v28.begin(), v28.end(), std::ref(f16rng)); |
|
std::generate(v29.begin(), v29.end(), std::ref(f16rng)); |
|
std::generate(v30.begin(), v30.end(), std::ref(f16rng)); |
|
std::generate(v31.begin(), v31.end(), std::ref(f16rng)); |
|
std::generate(v32.begin(), v32.end(), std::ref(f16rng)); |
|
std::generate(v33.begin(), v33.end(), std::ref(f16rng)); |
|
std::generate(v34.begin(), v34.end(), std::ref(f16rng)); |
|
std::generate(v35.begin(), v35.end(), std::ref(f16rng)); |
|
std::generate(v36.begin(), v36.end(), std::ref(f16rng)); |
|
std::generate(v37.begin(), v37.end(), std::ref(f16rng)); |
|
std::generate(v38.begin(), v38.end(), std::ref(f16rng)); |
|
std::generate(v39.begin(), v39.end(), std::ref(f16rng)); |
|
std::generate(v40.begin(), v40.end(), std::ref(f16rng)); |
|
std::generate(v41.begin(), v41.end(), std::ref(f16rng)); |
|
std::generate(v42.begin(), v42.end(), std::ref(f16rng)); |
|
std::generate(v43.begin(), v43.end(), std::ref(f16rng)); |
|
std::generate(v44.begin(), v44.end(), std::ref(f16rng)); |
|
std::generate(v45.begin(), v45.end(), std::ref(f16rng)); |
|
std::generate(v46.begin(), v46.end(), std::ref(f16rng)); |
|
std::generate(v47.begin(), v47.end(), std::ref(f16rng)); |
|
std::generate(v48.begin(), v48.end(), std::ref(f16rng)); |
|
std::generate(v49.begin(), v49.end(), std::ref(f16rng)); |
|
std::generate(v50.begin(), v50.end(), std::ref(f16rng)); |
|
std::generate(v51.begin(), v51.end(), std::ref(f16rng)); |
|
std::generate(v52.begin(), v52.end(), std::ref(f16rng)); |
|
std::generate(v53.begin(), v53.end(), std::ref(f16rng)); |
|
std::generate(v54.begin(), v54.end(), std::ref(f16rng)); |
|
std::generate(v55.begin(), v55.end(), std::ref(f16rng)); |
|
std::generate(v56.begin(), v56.end(), std::ref(f16rng)); |
|
std::generate(v57.begin(), v57.end(), std::ref(f16rng)); |
|
std::generate(v58.begin(), v58.end(), std::ref(f16rng)); |
|
std::generate(v59.begin(), v59.end(), std::ref(f16rng)); |
|
std::generate(v60.begin(), v60.end(), std::ref(f16rng)); |
|
std::generate(v61.begin(), v61.end(), std::ref(f16rng)); |
|
std::generate(v62.begin(), v62.end(), std::ref(f16rng)); |
|
std::generate(v63.begin(), v63.end(), std::ref(f16rng)); |
|
std::generate(v64.begin(), v64.end(), std::ref(f16rng)); |
|
std::generate(v65.begin(), v65.end(), std::ref(f16rng)); |
|
std::generate(v66.begin(), v66.end(), std::ref(f16rng)); |
|
std::generate(v67.begin(), v67.end(), std::ref(f16rng)); |
|
std::generate(v68.begin(), v68.end(), std::ref(f16rng)); |
|
std::generate(v69.begin(), v69.end(), std::ref(f16rng)); |
|
std::generate(v70.begin(), v70.end(), std::ref(f16rng)); |
|
std::generate(v71.begin(), v71.end(), std::ref(f16rng)); |
|
std::generate(v72.begin(), v72.end(), std::ref(f16rng)); |
|
std::generate(v73.begin(), v73.end(), std::ref(f16rng)); |
|
std::generate(v74.begin(), v74.end(), std::ref(f16rng)); |
|
std::generate(v75.begin(), v75.end(), std::ref(f16rng)); |
|
std::generate(v76.begin(), v76.end(), std::ref(f16rng)); |
|
std::generate(v77.begin(), v77.end(), std::ref(f16rng)); |
|
std::generate(v78.begin(), v78.end(), std::ref(f16rng)); |
|
std::generate(v79.begin(), v79.end(), std::ref(f16rng)); |
|
std::generate(v80.begin(), v80.end(), std::ref(f16rng)); |
|
std::generate(v81.begin(), v81.end(), std::ref(f16rng)); |
|
std::generate(v82.begin(), v82.end(), std::ref(f16rng)); |
|
std::generate(v83.begin(), v83.end(), std::ref(f16rng)); |
|
std::generate(v84.begin(), v84.end(), std::ref(f16rng)); |
|
std::generate(v85.begin(), v85.end(), std::ref(f16rng)); |
|
std::generate(v86.begin(), v86.end(), std::ref(f16rng)); |
|
std::generate(v87.begin(), v87.end(), std::ref(f16rng)); |
|
std::generate(v88.begin(), v88.end(), std::ref(f16rng)); |
|
std::generate(v89.begin(), v89.end(), std::ref(f16rng)); |
|
std::generate(v90.begin(), v90.end(), std::ref(f16rng)); |
|
std::generate(v91.begin(), v91.end(), std::ref(f16rng)); |
|
std::generate(v92.begin(), v92.end(), std::ref(f16rng)); |
|
std::generate(v93.begin(), v93.end(), std::ref(f16rng)); |
|
std::generate(v94.begin(), v94.end(), std::ref(f16rng)); |
|
std::generate(v95.begin(), v95.end(), std::ref(f16rng)); |
|
std::generate(v96.begin(), v96.end(), std::ref(f16rng)); |
|
std::generate(v97.begin(), v97.end(), std::ref(f16rng)); |
|
std::generate(v98.begin(), v98.end(), std::ref(f16rng)); |
|
std::generate(v99.begin(), v99.end(), std::ref(f16rng)); |
|
std::generate(v100.begin(), v100.end(), std::ref(f16rng)); |
|
std::generate(v101.begin(), v101.end(), std::ref(f16rng)); |
|
std::generate(v102.begin(), v102.end(), std::ref(f16rng)); |
|
std::generate(v103.begin(), v103.end(), std::ref(f16rng)); |
|
std::generate(v104.begin(), v104.end(), std::ref(f16rng)); |
|
std::generate(v105.begin(), v105.end(), std::ref(f16rng)); |
|
std::generate(v106.begin(), v106.end(), std::ref(f16rng)); |
|
std::generate(v107.begin(), v107.end(), std::ref(f16rng)); |
|
std::generate(v108.begin(), v108.end(), std::ref(f16rng)); |
|
std::generate(v109.begin(), v109.end(), std::ref(f16rng)); |
|
std::generate(v110.begin(), v110.end(), std::ref(f16rng)); |
|
std::generate(v111.begin(), v111.end(), std::ref(f16rng)); |
|
std::generate(v112.begin(), v112.end(), std::ref(f16rng)); |
|
std::generate(v113.begin(), v113.end(), std::ref(f16rng)); |
|
std::generate(w114.begin(), w114.end(), std::ref(f16rng)); |
|
std::generate(w115.begin(), w115.end(), std::ref(f16rng)); |
|
std::generate(w116.begin(), w116.end(), std::ref(f16rng)); |
|
std::generate(w117.begin(), w117.end(), std::ref(f16rng)); |
|
std::fill(w118.begin(), w118.end(), 0.0f); |
|
std::generate(w118.begin(), w118.end() - size_t(sparsity * w118.size()), std::ref(f16rng)); |
|
std::shuffle(w118.begin(), w118.end(), rng); |
|
std::generate(w119.begin(), w119.end(), std::ref(f16rng)); |
|
std::fill(w120.begin(), w120.end(), 0.0f); |
|
std::generate(w120.begin(), w120.end() - size_t(sparsity * w120.size()), std::ref(f16rng)); |
|
std::shuffle(w120.begin(), w120.end(), rng); |
|
std::generate(w121.begin(), w121.end(), std::ref(f16rng)); |
|
std::generate(w122.begin(), w122.end(), std::ref(f16rng)); |
|
std::generate(w123.begin(), w123.end(), std::ref(f16rng)); |
|
std::fill(w124.begin(), w124.end(), 0.0f); |
|
std::generate(w124.begin(), w124.end() - size_t(sparsity * w124.size()), std::ref(f16rng)); |
|
std::shuffle(w124.begin(), w124.end(), rng); |
|
std::generate(w125.begin(), w125.end(), std::ref(f16rng)); |
|
std::fill(w126.begin(), w126.end(), 0.0f); |
|
std::generate(w126.begin(), w126.end() - size_t(sparsity * w126.size()), std::ref(f16rng)); |
|
std::shuffle(w126.begin(), w126.end(), rng); |
|
std::generate(w127.begin(), w127.end(), std::ref(f16rng)); |
|
std::generate(w128.begin(), w128.end(), std::ref(f16rng)); |
|
std::generate(w129.begin(), w129.end(), std::ref(f16rng)); |
|
std::fill(w130.begin(), w130.end(), 0.0f); |
|
std::generate(w130.begin(), w130.end() - size_t(sparsity * w130.size()), std::ref(f16rng)); |
|
std::shuffle(w130.begin(), w130.end(), rng); |
|
std::generate(w131.begin(), w131.end(), std::ref(f16rng)); |
|
std::fill(w132.begin(), w132.end(), 0.0f); |
|
std::generate(w132.begin(), w132.end() - size_t(sparsity * w132.size()), std::ref(f16rng)); |
|
std::shuffle(w132.begin(), w132.end(), rng); |
|
std::generate(w133.begin(), w133.end(), std::ref(f16rng)); |
|
std::generate(w134.begin(), w134.end(), std::ref(f16rng)); |
|
std::generate(w135.begin(), w135.end(), std::ref(f16rng)); |
|
std::fill(w136.begin(), w136.end(), 0.0f); |
|
std::generate(w136.begin(), w136.end() - size_t(sparsity * w136.size()), std::ref(f16rng)); |
|
std::shuffle(w136.begin(), w136.end(), rng); |
|
std::generate(w137.begin(), w137.end(), std::ref(f16rng)); |
|
std::fill(w138.begin(), w138.end(), 0.0f); |
|
std::generate(w138.begin(), w138.end() - size_t(sparsity * w138.size()), std::ref(f16rng)); |
|
std::shuffle(w138.begin(), w138.end(), rng); |
|
std::generate(w139.begin(), w139.end(), std::ref(f16rng)); |
|
std::fill(w140.begin(), w140.end(), 0.0f); |
|
std::generate(w140.begin(), w140.end() - size_t(sparsity * w140.size()), std::ref(f16rng)); |
|
std::shuffle(w140.begin(), w140.end(), rng); |
|
std::generate(w141.begin(), w141.end(), std::ref(f16rng)); |
|
std::fill(w142.begin(), w142.end(), 0.0f); |
|
std::generate(w142.begin(), w142.end() - size_t(sparsity * w142.size()), std::ref(f16rng)); |
|
std::shuffle(w142.begin(), w142.end(), rng); |
|
std::generate(w143.begin(), w143.end(), std::ref(f16rng)); |
|
std::generate(w144.begin(), w144.end(), std::ref(f16rng)); |
|
std::generate(w145.begin(), w145.end(), std::ref(f16rng)); |
|
std::fill(w146.begin(), w146.end(), 0.0f); |
|
std::generate(w146.begin(), w146.end() - size_t(sparsity * w146.size()), std::ref(f16rng)); |
|
std::shuffle(w146.begin(), w146.end(), rng); |
|
std::generate(w147.begin(), w147.end(), std::ref(f16rng)); |
|
std::fill(w148.begin(), w148.end(), 0.0f); |
|
std::generate(w148.begin(), w148.end() - size_t(sparsity * w148.size()), std::ref(f16rng)); |
|
std::shuffle(w148.begin(), w148.end(), rng); |
|
std::generate(w149.begin(), w149.end(), std::ref(f16rng)); |
|
std::fill(w150.begin(), w150.end(), 0.0f); |
|
std::generate(w150.begin(), w150.end() - size_t(sparsity * w150.size()), std::ref(f16rng)); |
|
std::shuffle(w150.begin(), w150.end(), rng); |
|
std::generate(w151.begin(), w151.end(), std::ref(f16rng)); |
|
std::fill(w152.begin(), w152.end(), 0.0f); |
|
std::generate(w152.begin(), w152.end() - size_t(sparsity * w152.size()), std::ref(f16rng)); |
|
std::shuffle(w152.begin(), w152.end(), rng); |
|
std::generate(w153.begin(), w153.end(), std::ref(f16rng)); |
|
std::generate(w154.begin(), w154.end(), std::ref(f16rng)); |
|
std::generate(w155.begin(), w155.end(), std::ref(f16rng)); |
|
std::fill(w156.begin(), w156.end(), 0.0f); |
|
std::generate(w156.begin(), w156.end() - size_t(sparsity * w156.size()), std::ref(f16rng)); |
|
std::shuffle(w156.begin(), w156.end(), rng); |
|
std::generate(w157.begin(), w157.end(), std::ref(f16rng)); |
|
std::fill(w158.begin(), w158.end(), 0.0f); |
|
std::generate(w158.begin(), w158.end() - size_t(sparsity * w158.size()), std::ref(f16rng)); |
|
std::shuffle(w158.begin(), w158.end(), rng); |
|
std::generate(w159.begin(), w159.end(), std::ref(f16rng)); |
|
std::fill(w160.begin(), w160.end(), 0.0f); |
|
std::generate(w160.begin(), w160.end() - size_t(sparsity * w160.size()), std::ref(f16rng)); |
|
std::shuffle(w160.begin(), w160.end(), rng); |
|
std::generate(w161.begin(), w161.end(), std::ref(f16rng)); |
|
std::fill(w162.begin(), w162.end(), 0.0f); |
|
std::generate(w162.begin(), w162.end() - size_t(sparsity * w162.size()), std::ref(f16rng)); |
|
std::shuffle(w162.begin(), w162.end(), rng); |
|
std::generate(w163.begin(), w163.end(), std::ref(f16rng)); |
|
std::generate(w164.begin(), w164.end(), std::ref(f16rng)); |
|
std::generate(w165.begin(), w165.end(), std::ref(f16rng)); |
|
std::fill(w166.begin(), w166.end(), 0.0f); |
|
std::generate(w166.begin(), w166.end() - size_t(sparsity * w166.size()), std::ref(f16rng)); |
|
std::shuffle(w166.begin(), w166.end(), rng); |
|
std::generate(w167.begin(), w167.end(), std::ref(f16rng)); |
|
std::fill(w168.begin(), w168.end(), 0.0f); |
|
std::generate(w168.begin(), w168.end() - size_t(sparsity * w168.size()), std::ref(f16rng)); |
|
std::shuffle(w168.begin(), w168.end(), rng); |
|
std::generate(w169.begin(), w169.end(), std::ref(f16rng)); |
|
std::generate(w170.begin(), w170.end(), std::ref(f16rng)); |
|
std::generate(w171.begin(), w171.end(), std::ref(f16rng)); |
|
std::fill(w172.begin(), w172.end(), 0.0f); |
|
std::generate(w172.begin(), w172.end() - size_t(sparsity * w172.size()), std::ref(f16rng)); |
|
std::shuffle(w172.begin(), w172.end(), rng); |
|
std::generate(w173.begin(), w173.end(), std::ref(f16rng)); |
|
std::fill(w174.begin(), w174.end(), 0.0f); |
|
std::generate(w174.begin(), w174.end() - size_t(sparsity * w174.size()), std::ref(f16rng)); |
|
std::shuffle(w174.begin(), w174.end(), rng); |
|
std::generate(w175.begin(), w175.end(), std::ref(f16rng)); |
|
std::generate(w176.begin(), w176.end(), std::ref(f16rng)); |
|
std::generate(w177.begin(), w177.end(), std::ref(f16rng)); |
|
std::fill(w178.begin(), w178.end(), 0.0f); |
|
std::generate(w178.begin(), w178.end() - size_t(sparsity * w178.size()), std::ref(f16rng)); |
|
std::shuffle(w178.begin(), w178.end(), rng); |
|
std::generate(w179.begin(), w179.end(), std::ref(f16rng)); |
|
std::fill(w180.begin(), w180.end(), 0.0f); |
|
std::generate(w180.begin(), w180.end() - size_t(sparsity * w180.size()), std::ref(f16rng)); |
|
std::shuffle(w180.begin(), w180.end(), rng); |
|
std::generate(w181.begin(), w181.end(), std::ref(f16rng)); |
|
std::generate(w182.begin(), w182.end(), std::ref(f16rng)); |
|
std::generate(w183.begin(), w183.end(), std::ref(f16rng)); |
|
std::fill(w184.begin(), w184.end(), 0.0f); |
|
std::generate(w184.begin(), w184.end() - size_t(sparsity * w184.size()), std::ref(f16rng)); |
|
std::shuffle(w184.begin(), w184.end(), rng); |
|
std::generate(w185.begin(), w185.end(), std::ref(f16rng)); |
|
std::fill(w186.begin(), w186.end(), 0.0f); |
|
std::generate(w186.begin(), w186.end() - size_t(sparsity * w186.size()), std::ref(f16rng)); |
|
std::shuffle(w186.begin(), w186.end(), rng); |
|
std::generate(w187.begin(), w187.end(), std::ref(f16rng)); |
|
std::generate(w188.begin(), w188.end(), std::ref(f16rng)); |
|
std::generate(w189.begin(), w189.end(), std::ref(f16rng)); |
|
std::fill(w190.begin(), w190.end(), 0.0f); |
|
std::generate(w190.begin(), w190.end() - size_t(sparsity * w190.size()), std::ref(f16rng)); |
|
std::shuffle(w190.begin(), w190.end(), rng); |
|
std::generate(w191.begin(), w191.end(), std::ref(f16rng)); |
|
std::fill(w192.begin(), w192.end(), 0.0f); |
|
std::generate(w192.begin(), w192.end() - size_t(sparsity * w192.size()), std::ref(f16rng)); |
|
std::shuffle(w192.begin(), w192.end(), rng); |
|
std::generate(w193.begin(), w193.end(), std::ref(f16rng)); |
|
std::fill(w194.begin(), w194.end(), 0.0f); |
|
std::generate(w194.begin(), w194.end() - size_t(sparsity * w194.size()), std::ref(f16rng)); |
|
std::shuffle(w194.begin(), w194.end(), rng); |
|
std::generate(w195.begin(), w195.end(), std::ref(f16rng)); |
|
std::fill(w196.begin(), w196.end(), 0.0f); |
|
std::generate(w196.begin(), w196.end() - size_t(sparsity * w196.size()), std::ref(f16rng)); |
|
std::shuffle(w196.begin(), w196.end(), rng); |
|
std::generate(w197.begin(), w197.end(), std::ref(f16rng)); |
|
std::generate(w198.begin(), w198.end(), std::ref(f16rng)); |
|
std::generate(w199.begin(), w199.end(), std::ref(f16rng)); |
|
std::fill(w200.begin(), w200.end(), 0.0f); |
|
std::generate(w200.begin(), w200.end() - size_t(sparsity * w200.size()), std::ref(f16rng)); |
|
std::shuffle(w200.begin(), w200.end(), rng); |
|
std::generate(w201.begin(), w201.end(), std::ref(f16rng)); |
|
std::fill(w202.begin(), w202.end(), 0.0f); |
|
std::generate(w202.begin(), w202.end() - size_t(sparsity * w202.size()), std::ref(f16rng)); |
|
std::shuffle(w202.begin(), w202.end(), rng); |
|
std::generate(w203.begin(), w203.end(), std::ref(f16rng)); |
|
std::fill(w204.begin(), w204.end(), 0.0f); |
|
std::generate(w204.begin(), w204.end() - size_t(sparsity * w204.size()), std::ref(f16rng)); |
|
std::shuffle(w204.begin(), w204.end(), rng); |
|
std::generate(w205.begin(), w205.end(), std::ref(f16rng)); |
|
std::fill(w206.begin(), w206.end(), 0.0f); |
|
std::generate(w206.begin(), w206.end() - size_t(sparsity * w206.size()), std::ref(f16rng)); |
|
std::shuffle(w206.begin(), w206.end(), rng); |
|
std::generate(w207.begin(), w207.end(), std::ref(f16rng)); |
|
std::generate(w208.begin(), w208.end(), std::ref(f16rng)); |
|
std::generate(w209.begin(), w209.end(), std::ref(f16rng)); |
|
std::fill(w210.begin(), w210.end(), 0.0f); |
|
std::generate(w210.begin(), w210.end() - size_t(sparsity * w210.size()), std::ref(f16rng)); |
|
std::shuffle(w210.begin(), w210.end(), rng); |
|
std::generate(w211.begin(), w211.end(), std::ref(f16rng)); |
|
std::fill(w212.begin(), w212.end(), 0.0f); |
|
std::generate(w212.begin(), w212.end() - size_t(sparsity * w212.size()), std::ref(f16rng)); |
|
std::shuffle(w212.begin(), w212.end(), rng); |
|
std::generate(w213.begin(), w213.end(), std::ref(f16rng)); |
|
std::fill(w214.begin(), w214.end(), 0.0f); |
|
std::generate(w214.begin(), w214.end() - size_t(sparsity * w214.size()), std::ref(f16rng)); |
|
std::shuffle(w214.begin(), w214.end(), rng); |
|
std::generate(w215.begin(), w215.end(), std::ref(f16rng)); |
|
std::fill(w216.begin(), w216.end(), 0.0f); |
|
std::generate(w216.begin(), w216.end() - size_t(sparsity * w216.size()), std::ref(f16rng)); |
|
std::shuffle(w216.begin(), w216.end(), rng); |
|
std::generate(w217.begin(), w217.end(), std::ref(f16rng)); |
|
std::generate(w218.begin(), w218.end(), std::ref(f16rng)); |
|
std::generate(w219.begin(), w219.end(), std::ref(f16rng)); |
|
std::fill(w220.begin(), w220.end(), 0.0f); |
|
std::generate(w220.begin(), w220.end() - size_t(sparsity * w220.size()), std::ref(f16rng)); |
|
std::shuffle(w220.begin(), w220.end(), rng); |
|
std::generate(w221.begin(), w221.end(), std::ref(f16rng)); |
|
std::fill(w222.begin(), w222.end(), 0.0f); |
|
std::generate(w222.begin(), w222.end() - size_t(sparsity * w222.size()), std::ref(f16rng)); |
|
std::shuffle(w222.begin(), w222.end(), rng); |
|
std::generate(w223.begin(), w223.end(), std::ref(f16rng)); |
|
std::fill(w224.begin(), w224.end(), 0.0f); |
|
std::generate(w224.begin(), w224.end() - size_t(sparsity * w224.size()), std::ref(f16rng)); |
|
std::shuffle(w224.begin(), w224.end(), rng); |
|
std::generate(w225.begin(), w225.end(), std::ref(f16rng)); |
|
std::fill(w226.begin(), w226.end(), 0.0f); |
|
std::generate(w226.begin(), w226.end() - size_t(sparsity * w226.size()), std::ref(f16rng)); |
|
std::shuffle(w226.begin(), w226.end(), rng); |
|
std::generate(w227.begin(), w227.end(), std::ref(f16rng)); |
|
std::generate(w228.begin(), w228.end(), std::ref(f16rng)); |
|
std::generate(w229.begin(), w229.end(), std::ref(f16rng)); |
|
std::fill(w230.begin(), w230.end(), 0.0f); |
|
std::generate(w230.begin(), w230.end() - size_t(sparsity * w230.size()), std::ref(f16rng)); |
|
std::shuffle(w230.begin(), w230.end(), rng); |
|
std::generate(w231.begin(), w231.end(), std::ref(f16rng)); |
|
std::fill(w232.begin(), w232.end(), 0.0f); |
|
std::generate(w232.begin(), w232.end() - size_t(sparsity * w232.size()), std::ref(f16rng)); |
|
std::shuffle(w232.begin(), w232.end(), rng); |
|
std::generate(w233.begin(), w233.end(), std::ref(f16rng)); |
|
std::fill(w234.begin(), w234.end(), 0.0f); |
|
std::generate(w234.begin(), w234.end() - size_t(sparsity * w234.size()), std::ref(f16rng)); |
|
std::shuffle(w234.begin(), w234.end(), rng); |
|
std::generate(w235.begin(), w235.end(), std::ref(f16rng)); |
|
std::fill(w236.begin(), w236.end(), 0.0f); |
|
std::generate(w236.begin(), w236.end() - size_t(sparsity * w236.size()), std::ref(f16rng)); |
|
std::shuffle(w236.begin(), w236.end(), rng); |
|
std::generate(w237.begin(), w237.end(), std::ref(f16rng)); |
|
std::generate(w238.begin(), w238.end(), std::ref(f16rng)); |
|
std::generate(w239.begin(), w239.end(), std::ref(f16rng)); |
|
std::generate(w240.begin(), w240.end(), std::ref(f16rng)); |
|
std::generate(w241.begin(), w241.end(), std::ref(f16rng)); |
|
|
|
ExecutionPlan operators; |
|
xnn_status status; |
|
|
|
xnn_operator_t op0 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
2 , 2 , |
|
1 , 1 , |
|
1 , |
|
3 , |
|
16 , |
|
3 , |
|
16 , |
|
w114.data(), w115.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
XNN_FLAG_INPUT_NHWC , |
|
nullptr, |
|
nullptr, |
|
&op0); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #0" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op0, xnn_delete_operator); |
|
|
|
xnn_operator_t op1 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
16 , |
|
16 , |
|
16 , |
|
0 , |
|
&op1); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #1" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op1, xnn_delete_operator); |
|
|
|
xnn_operator_t op2 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
1 , 1 , |
|
1 , 1 , |
|
16 , |
|
1 , |
|
1 , |
|
16 , |
|
16 , |
|
w116.data(), w117.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op2); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #2" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op2, xnn_delete_operator); |
|
|
|
xnn_operator_t op3 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
16 , |
|
16 , |
|
16 , |
|
16 , |
|
w118.data(), w119.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op3); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #3" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op3, xnn_delete_operator); |
|
|
|
xnn_operator_t op4 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op4); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #4" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op4, xnn_delete_operator); |
|
|
|
xnn_operator_t op5 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
16 , |
|
64 , |
|
16 , |
|
64 , |
|
w120.data(), w121.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op5); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #5" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op5, xnn_delete_operator); |
|
|
|
xnn_operator_t op6 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
2 , 2 , |
|
1 , 1 , |
|
64 , |
|
1 , |
|
1 , |
|
64 , |
|
64 , |
|
w122.data(), w123.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op6); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #6" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op6, xnn_delete_operator); |
|
|
|
xnn_operator_t op7 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
64 , |
|
24 , |
|
64 , |
|
24 , |
|
w124.data(), w125.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op7); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #7" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op7, xnn_delete_operator); |
|
|
|
xnn_operator_t op8 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
24 , |
|
72 , |
|
24 , |
|
72 , |
|
w126.data(), w127.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op8); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #8" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op8, xnn_delete_operator); |
|
|
|
xnn_operator_t op9 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
1 , 1 , |
|
1 , 1 , |
|
72 , |
|
1 , |
|
1 , |
|
72 , |
|
72 , |
|
w128.data(), w129.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op9); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #9" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op9, xnn_delete_operator); |
|
|
|
xnn_operator_t op10 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
72 , |
|
24 , |
|
72 , |
|
24 , |
|
w130.data(), w131.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op10); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #10" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op10, xnn_delete_operator); |
|
|
|
xnn_operator_t op11 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op11); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #11" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op11, xnn_delete_operator); |
|
|
|
xnn_operator_t op12 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
24 , |
|
72 , |
|
24 , |
|
72 , |
|
w132.data(), w133.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op12); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #12" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op12, xnn_delete_operator); |
|
|
|
xnn_operator_t op13 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
2 , 2 , |
|
2 , 2 , |
|
5 , 5 , |
|
2 , 2 , |
|
1 , 1 , |
|
72 , |
|
1 , |
|
1 , |
|
72 , |
|
72 , |
|
w134.data(), w135.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op13); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #13" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op13, xnn_delete_operator); |
|
|
|
xnn_operator_t op14 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
72 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op14); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #14" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op14, xnn_delete_operator); |
|
|
|
xnn_operator_t op15 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
72 , |
|
24 , |
|
72 , |
|
24 , |
|
w136.data(), w137.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op15); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #15" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op15, xnn_delete_operator); |
|
|
|
xnn_operator_t op16 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
24 , |
|
72 , |
|
24 , |
|
72 , |
|
w138.data(), w139.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op16); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #16" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op16, xnn_delete_operator); |
|
|
|
xnn_operator_t op17 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op17); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #17" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op17, xnn_delete_operator); |
|
|
|
xnn_operator_t op18 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
72 , |
|
40 , |
|
72 , |
|
40 , |
|
w140.data(), w141.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op18); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #18" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op18, xnn_delete_operator); |
|
|
|
xnn_operator_t op19 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
40 , |
|
120 , |
|
40 , |
|
120 , |
|
w142.data(), w143.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op19); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #19" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op19, xnn_delete_operator); |
|
|
|
xnn_operator_t op20 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
2 , 2 , |
|
2 , 2 , |
|
5 , 5 , |
|
1 , 1 , |
|
1 , 1 , |
|
120 , |
|
1 , |
|
1 , |
|
120 , |
|
120 , |
|
w144.data(), w145.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op20); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #20" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op20, xnn_delete_operator); |
|
|
|
xnn_operator_t op21 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
120 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op21); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #21" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op21, xnn_delete_operator); |
|
|
|
xnn_operator_t op22 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
120 , |
|
32 , |
|
120 , |
|
32 , |
|
w146.data(), w147.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op22); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #22" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op22, xnn_delete_operator); |
|
|
|
xnn_operator_t op23 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
32 , |
|
120 , |
|
32 , |
|
120 , |
|
w148.data(), w149.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op23); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #23" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op23, xnn_delete_operator); |
|
|
|
xnn_operator_t op24 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op24); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #24" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op24, xnn_delete_operator); |
|
|
|
xnn_operator_t op25 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
120 , |
|
40 , |
|
120 , |
|
40 , |
|
w150.data(), w151.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op25); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #25" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op25, xnn_delete_operator); |
|
|
|
xnn_operator_t op26 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op26); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #26" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op26, xnn_delete_operator); |
|
|
|
xnn_operator_t op27 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
40 , |
|
120 , |
|
40 , |
|
120 , |
|
w152.data(), w153.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op27); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #27" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op27, xnn_delete_operator); |
|
|
|
xnn_operator_t op28 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
2 , 2 , |
|
2 , 2 , |
|
5 , 5 , |
|
1 , 1 , |
|
1 , 1 , |
|
120 , |
|
1 , |
|
1 , |
|
120 , |
|
120 , |
|
w154.data(), w155.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op28); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #28" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op28, xnn_delete_operator); |
|
|
|
xnn_operator_t op29 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
120 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op29); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #29" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op29, xnn_delete_operator); |
|
|
|
xnn_operator_t op30 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
120 , |
|
32 , |
|
120 , |
|
32 , |
|
w156.data(), w157.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op30); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #30" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op30, xnn_delete_operator); |
|
|
|
xnn_operator_t op31 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
32 , |
|
120 , |
|
32 , |
|
120 , |
|
w158.data(), w159.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op31); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #31" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op31, xnn_delete_operator); |
|
|
|
xnn_operator_t op32 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op32); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #32" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op32, xnn_delete_operator); |
|
|
|
xnn_operator_t op33 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
120 , |
|
40 , |
|
120 , |
|
40 , |
|
w160.data(), w161.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op33); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #33" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op33, xnn_delete_operator); |
|
|
|
xnn_operator_t op34 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op34); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #34" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op34, xnn_delete_operator); |
|
|
|
xnn_operator_t op35 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
40 , |
|
240 , |
|
40 , |
|
240 , |
|
w162.data(), w163.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op35); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #35" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op35, xnn_delete_operator); |
|
|
|
xnn_operator_t op36 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
240 , |
|
240 , |
|
240 , |
|
0 , |
|
&op36); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #36" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op36, xnn_delete_operator); |
|
|
|
xnn_operator_t op37 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
2 , 2 , |
|
1 , 1 , |
|
240 , |
|
1 , |
|
1 , |
|
240 , |
|
240 , |
|
w164.data(), w165.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op37); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #37" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op37, xnn_delete_operator); |
|
|
|
xnn_operator_t op38 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
240 , |
|
240 , |
|
240 , |
|
0 , |
|
&op38); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #38" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op38, xnn_delete_operator); |
|
|
|
xnn_operator_t op39 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
240 , |
|
80 , |
|
240 , |
|
80 , |
|
w166.data(), w167.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op39); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #39" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op39, xnn_delete_operator); |
|
|
|
xnn_operator_t op40 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
80 , |
|
200 , |
|
80 , |
|
200 , |
|
w168.data(), w169.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op40); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #40" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op40, xnn_delete_operator); |
|
|
|
xnn_operator_t op41 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
200 , |
|
200 , |
|
200 , |
|
0 , |
|
&op41); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #41" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op41, xnn_delete_operator); |
|
|
|
xnn_operator_t op42 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
1 , 1 , |
|
1 , 1 , |
|
200 , |
|
1 , |
|
1 , |
|
200 , |
|
200 , |
|
w170.data(), w171.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op42); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #42" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op42, xnn_delete_operator); |
|
|
|
xnn_operator_t op43 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
200 , |
|
200 , |
|
200 , |
|
0 , |
|
&op43); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #43" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op43, xnn_delete_operator); |
|
|
|
xnn_operator_t op44 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
200 , |
|
80 , |
|
200 , |
|
80 , |
|
w172.data(), w173.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op44); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #44" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op44, xnn_delete_operator); |
|
|
|
xnn_operator_t op45 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op45); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #45" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op45, xnn_delete_operator); |
|
|
|
xnn_operator_t op46 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
80 , |
|
184 , |
|
80 , |
|
184 , |
|
w174.data(), w175.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op46); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #46" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op46, xnn_delete_operator); |
|
|
|
xnn_operator_t op47 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
184 , |
|
184 , |
|
184 , |
|
0 , |
|
&op47); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #47" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op47, xnn_delete_operator); |
|
|
|
xnn_operator_t op48 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
1 , 1 , |
|
1 , 1 , |
|
184 , |
|
1 , |
|
1 , |
|
184 , |
|
184 , |
|
w176.data(), w177.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op48); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #48" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op48, xnn_delete_operator); |
|
|
|
xnn_operator_t op49 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
184 , |
|
184 , |
|
184 , |
|
0 , |
|
&op49); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #49" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op49, xnn_delete_operator); |
|
|
|
xnn_operator_t op50 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
184 , |
|
80 , |
|
184 , |
|
80 , |
|
w178.data(), w179.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op50); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #50" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op50, xnn_delete_operator); |
|
|
|
xnn_operator_t op51 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op51); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #51" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op51, xnn_delete_operator); |
|
|
|
xnn_operator_t op52 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
80 , |
|
184 , |
|
80 , |
|
184 , |
|
w180.data(), w181.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op52); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #52" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op52, xnn_delete_operator); |
|
|
|
xnn_operator_t op53 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
184 , |
|
184 , |
|
184 , |
|
0 , |
|
&op53); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #53" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op53, xnn_delete_operator); |
|
|
|
xnn_operator_t op54 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
1 , 1 , |
|
1 , 1 , |
|
184 , |
|
1 , |
|
1 , |
|
184 , |
|
184 , |
|
w182.data(), w183.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op54); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #54" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op54, xnn_delete_operator); |
|
|
|
xnn_operator_t op55 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
184 , |
|
184 , |
|
184 , |
|
0 , |
|
&op55); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #55" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op55, xnn_delete_operator); |
|
|
|
xnn_operator_t op56 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
184 , |
|
80 , |
|
184 , |
|
80 , |
|
w184.data(), w185.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op56); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #56" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op56, xnn_delete_operator); |
|
|
|
xnn_operator_t op57 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op57); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #57" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op57, xnn_delete_operator); |
|
|
|
xnn_operator_t op58 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
80 , |
|
480 , |
|
80 , |
|
480 , |
|
w186.data(), w187.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op58); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #58" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op58, xnn_delete_operator); |
|
|
|
xnn_operator_t op59 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
480 , |
|
480 , |
|
480 , |
|
0 , |
|
&op59); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #59" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op59, xnn_delete_operator); |
|
|
|
xnn_operator_t op60 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
1 , 1 , |
|
1 , 1 , |
|
480 , |
|
1 , |
|
1 , |
|
480 , |
|
480 , |
|
w188.data(), w189.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op60); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #60" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op60, xnn_delete_operator); |
|
|
|
xnn_operator_t op61 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
480 , |
|
480 , |
|
480 , |
|
0 , |
|
&op61); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #61" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op61, xnn_delete_operator); |
|
|
|
xnn_operator_t op62 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
480 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op62); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #62" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op62, xnn_delete_operator); |
|
|
|
xnn_operator_t op63 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
480 , |
|
120 , |
|
480 , |
|
120 , |
|
w190.data(), w191.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op63); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #63" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op63, xnn_delete_operator); |
|
|
|
xnn_operator_t op64 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
120 , |
|
480 , |
|
120 , |
|
480 , |
|
w192.data(), w193.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op64); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #64" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op64, xnn_delete_operator); |
|
|
|
xnn_operator_t op65 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op65); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #65" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op65, xnn_delete_operator); |
|
|
|
xnn_operator_t op66 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
480 , |
|
112 , |
|
480 , |
|
112 , |
|
w194.data(), w195.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op66); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #66" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op66, xnn_delete_operator); |
|
|
|
xnn_operator_t op67 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
112 , |
|
672 , |
|
112 , |
|
672 , |
|
w196.data(), w197.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op67); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #67" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op67, xnn_delete_operator); |
|
|
|
xnn_operator_t op68 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
672 , |
|
672 , |
|
672 , |
|
0 , |
|
&op68); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #68" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op68, xnn_delete_operator); |
|
|
|
xnn_operator_t op69 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
1 , 1 , |
|
1 , 1 , |
|
3 , 3 , |
|
1 , 1 , |
|
1 , 1 , |
|
672 , |
|
1 , |
|
1 , |
|
672 , |
|
672 , |
|
w198.data(), w199.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op69); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #69" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op69, xnn_delete_operator); |
|
|
|
xnn_operator_t op70 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
672 , |
|
672 , |
|
672 , |
|
0 , |
|
&op70); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #70" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op70, xnn_delete_operator); |
|
|
|
xnn_operator_t op71 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
672 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op71); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #71" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op71, xnn_delete_operator); |
|
|
|
xnn_operator_t op72 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
672 , |
|
168 , |
|
672 , |
|
168 , |
|
w200.data(), w201.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op72); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #72" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op72, xnn_delete_operator); |
|
|
|
xnn_operator_t op73 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
168 , |
|
672 , |
|
168 , |
|
672 , |
|
w202.data(), w203.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op73); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #73" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op73, xnn_delete_operator); |
|
|
|
xnn_operator_t op74 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op74); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #74" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op74, xnn_delete_operator); |
|
|
|
xnn_operator_t op75 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
672 , |
|
112 , |
|
672 , |
|
112 , |
|
w204.data(), w205.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op75); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #75" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op75, xnn_delete_operator); |
|
|
|
xnn_operator_t op76 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op76); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #76" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op76, xnn_delete_operator); |
|
|
|
xnn_operator_t op77 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
112 , |
|
672 , |
|
112 , |
|
672 , |
|
w206.data(), w207.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op77); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #77" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op77, xnn_delete_operator); |
|
|
|
xnn_operator_t op78 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
672 , |
|
672 , |
|
672 , |
|
0 , |
|
&op78); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #78" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op78, xnn_delete_operator); |
|
|
|
xnn_operator_t op79 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
2 , 2 , |
|
2 , 2 , |
|
5 , 5 , |
|
2 , 2 , |
|
1 , 1 , |
|
672 , |
|
1 , |
|
1 , |
|
672 , |
|
672 , |
|
w208.data(), w209.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op79); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #79" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op79, xnn_delete_operator); |
|
|
|
xnn_operator_t op80 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
672 , |
|
672 , |
|
672 , |
|
0 , |
|
&op80); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #80" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op80, xnn_delete_operator); |
|
|
|
xnn_operator_t op81 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
672 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op81); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #81" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op81, xnn_delete_operator); |
|
|
|
xnn_operator_t op82 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
672 , |
|
168 , |
|
672 , |
|
168 , |
|
w210.data(), w211.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op82); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #82" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op82, xnn_delete_operator); |
|
|
|
xnn_operator_t op83 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
168 , |
|
672 , |
|
168 , |
|
672 , |
|
w212.data(), w213.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op83); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #83" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op83, xnn_delete_operator); |
|
|
|
xnn_operator_t op84 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op84); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #84" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op84, xnn_delete_operator); |
|
|
|
xnn_operator_t op85 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
672 , |
|
160 , |
|
672 , |
|
160 , |
|
w214.data(), w215.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op85); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #85" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op85, xnn_delete_operator); |
|
|
|
xnn_operator_t op86 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
160 , |
|
960 , |
|
160 , |
|
960 , |
|
w216.data(), w217.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op86); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #86" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op86, xnn_delete_operator); |
|
|
|
xnn_operator_t op87 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
960 , |
|
960 , |
|
960 , |
|
0 , |
|
&op87); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #87" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op87, xnn_delete_operator); |
|
|
|
xnn_operator_t op88 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
2 , 2 , |
|
2 , 2 , |
|
5 , 5 , |
|
1 , 1 , |
|
1 , 1 , |
|
960 , |
|
1 , |
|
1 , |
|
960 , |
|
960 , |
|
w218.data(), w219.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op88); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #88" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op88, xnn_delete_operator); |
|
|
|
xnn_operator_t op89 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
960 , |
|
960 , |
|
960 , |
|
0 , |
|
&op89); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #89" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op89, xnn_delete_operator); |
|
|
|
xnn_operator_t op90 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
960 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op90); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #90" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op90, xnn_delete_operator); |
|
|
|
xnn_operator_t op91 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
960 , |
|
240 , |
|
960 , |
|
240 , |
|
w220.data(), w221.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op91); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #91" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op91, xnn_delete_operator); |
|
|
|
xnn_operator_t op92 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
240 , |
|
960 , |
|
240 , |
|
960 , |
|
w222.data(), w223.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op92); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #92" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op92, xnn_delete_operator); |
|
|
|
xnn_operator_t op93 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op93); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #93" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op93, xnn_delete_operator); |
|
|
|
xnn_operator_t op94 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
960 , |
|
160 , |
|
960 , |
|
160 , |
|
w224.data(), w225.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op94); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #94" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op94, xnn_delete_operator); |
|
|
|
xnn_operator_t op95 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op95); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #95" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op95, xnn_delete_operator); |
|
|
|
xnn_operator_t op96 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
160 , |
|
960 , |
|
160 , |
|
960 , |
|
w226.data(), w227.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op96); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #96" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op96, xnn_delete_operator); |
|
|
|
xnn_operator_t op97 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
960 , |
|
960 , |
|
960 , |
|
0 , |
|
&op97); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #97" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op97, xnn_delete_operator); |
|
|
|
xnn_operator_t op98 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
2 , 2 , |
|
2 , 2 , |
|
5 , 5 , |
|
1 , 1 , |
|
1 , 1 , |
|
960 , |
|
1 , |
|
1 , |
|
960 , |
|
960 , |
|
w228.data(), w229.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op98); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #98" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op98, xnn_delete_operator); |
|
|
|
xnn_operator_t op99 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
960 , |
|
960 , |
|
960 , |
|
0 , |
|
&op99); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #99" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op99, xnn_delete_operator); |
|
|
|
xnn_operator_t op100 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
960 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op100); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #100" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op100, xnn_delete_operator); |
|
|
|
xnn_operator_t op101 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
960 , |
|
240 , |
|
960 , |
|
240 , |
|
w230.data(), w231.data(), |
|
0.0f , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op101); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #101" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op101, xnn_delete_operator); |
|
|
|
xnn_operator_t op102 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
240 , |
|
960 , |
|
240 , |
|
960 , |
|
w232.data(), w233.data(), |
|
0.0f , +0x1.00014Fp+0 , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op102); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #102" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op102, xnn_delete_operator); |
|
|
|
xnn_operator_t op103 = nullptr; |
|
status = xnn_create_multiply_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op103); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #103" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op103, xnn_delete_operator); |
|
|
|
xnn_operator_t op104 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
960 , |
|
160 , |
|
960 , |
|
160 , |
|
w234.data(), w235.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op104); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #104" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op104, xnn_delete_operator); |
|
|
|
xnn_operator_t op105 = nullptr; |
|
status = xnn_create_add_nd_f16( |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
&op105); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #105" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op105, xnn_delete_operator); |
|
|
|
xnn_operator_t op106 = nullptr; |
|
status = xnn_create_convolution2d_nchw_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
160 , |
|
960 , |
|
160 , |
|
960 , |
|
w236.data(), w237.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op106); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #106" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op106, xnn_delete_operator); |
|
|
|
xnn_operator_t op107 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
960 , |
|
960 , |
|
960 , |
|
0 , |
|
&op107); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #107" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op107, xnn_delete_operator); |
|
|
|
xnn_operator_t op108 = nullptr; |
|
status = xnn_create_global_average_pooling_ncw_f16( |
|
960 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op108); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #108" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op108, xnn_delete_operator); |
|
|
|
xnn_operator_t op109 = nullptr; |
|
status = xnn_create_convolution2d_nhwc_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
960 , |
|
1280 , |
|
960 , |
|
1280 , |
|
w238.data(), w239.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op109); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #109" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op109, xnn_delete_operator); |
|
|
|
xnn_operator_t op110 = nullptr; |
|
status = xnn_create_hardswish_nc_f16( |
|
1280 , |
|
1280 , |
|
1280 , |
|
0 , |
|
&op110); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #110" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op110, xnn_delete_operator); |
|
|
|
xnn_operator_t op111 = nullptr; |
|
status = xnn_create_global_average_pooling_nwc_f16( |
|
1280 , 1280 , 1280 , |
|
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
|
0 , |
|
&op111); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #111" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op111, xnn_delete_operator); |
|
|
|
xnn_operator_t op112 = nullptr; |
|
status = xnn_create_convolution2d_nhwc_f16( |
|
0 , 0 , |
|
0 , 0 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , 1 , |
|
1 , |
|
1280 , |
|
1001 , |
|
1280 , |
|
1001 , |
|
w240.data(), w241.data(), |
|
-std::numeric_limits<float>::infinity() , std::numeric_limits<float>::infinity() , |
|
0 , |
|
nullptr, |
|
nullptr, |
|
&op112); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to create operation #112" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
operators.emplace_back(op112, xnn_delete_operator); |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op0, |
|
1, 224, 224, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #0" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op1, |
|
12544, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #1" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op2, |
|
1, 112, 112, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #2" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op3, |
|
1, 112, 112, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #3" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 16, 112, 112 }; |
|
const size_t b_shape[] = { 1, 16, 112, 112 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op4, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #4" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op5, |
|
1, 112, 112, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #5" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op6, |
|
1, 112, 112, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #6" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op7, |
|
1, 56, 56, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #7" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op8, |
|
1, 56, 56, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #8" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op9, |
|
1, 56, 56, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #9" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op10, |
|
1, 56, 56, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #10" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 24, 56, 56 }; |
|
const size_t b_shape[] = { 1, 24, 56, 56 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op11, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #11" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op12, |
|
1, 56, 56, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #12" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op13, |
|
1, 56, 56, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #13" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op14, |
|
1, 784 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #14" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op15, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #15" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op16, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #16" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 72, 28, 28 }; |
|
const size_t b_shape[] = { 1, 72, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op17, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #17" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op18, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #18" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op19, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #19" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op20, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #20" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op21, |
|
1, 784 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #21" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op22, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #22" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op23, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #23" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 120, 28, 28 }; |
|
const size_t b_shape[] = { 1, 120, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op24, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #24" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op25, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #25" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 40, 28, 28 }; |
|
const size_t b_shape[] = { 1, 40, 28, 28 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op26, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #26" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op27, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #27" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op28, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #28" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op29, |
|
1, 784 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #29" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op30, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #30" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op31, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #31" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 120, 28, 28 }; |
|
const size_t b_shape[] = { 1, 120, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op32, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #32" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op33, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #33" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 40, 28, 28 }; |
|
const size_t b_shape[] = { 1, 40, 28, 28 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op34, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #34" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op35, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #35" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op36, |
|
784, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #36" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op37, |
|
1, 28, 28, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #37" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op38, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #38" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op39, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #39" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op40, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #40" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op41, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #41" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op42, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #42" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op43, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #43" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op44, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #44" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 80, 14, 14 }; |
|
const size_t b_shape[] = { 1, 80, 14, 14 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op45, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #45" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op46, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #46" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op47, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #47" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op48, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #48" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op49, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #49" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op50, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #50" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 80, 14, 14 }; |
|
const size_t b_shape[] = { 1, 80, 14, 14 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op51, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #51" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op52, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #52" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op53, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #53" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op54, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #54" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op55, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #55" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op56, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #56" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 80, 14, 14 }; |
|
const size_t b_shape[] = { 1, 80, 14, 14 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op57, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #57" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op58, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #58" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op59, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #59" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op60, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #60" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op61, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #61" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op62, |
|
1, 196 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #62" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op63, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #63" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op64, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #64" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 480, 14, 14 }; |
|
const size_t b_shape[] = { 1, 480, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op65, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #65" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op66, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #66" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op67, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #67" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op68, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #68" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op69, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #69" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op70, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #70" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op71, |
|
1, 196 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #71" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op72, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #72" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op73, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #73" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 672, 14, 14 }; |
|
const size_t b_shape[] = { 1, 672, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op74, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #74" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op75, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #75" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 112, 14, 14 }; |
|
const size_t b_shape[] = { 1, 112, 14, 14 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op76, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #76" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op77, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #77" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op78, |
|
196, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #78" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op79, |
|
1, 14, 14, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #79" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op80, |
|
49, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #80" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op81, |
|
1, 49 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #81" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op82, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #82" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op83, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #83" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 672, 7, 7 }; |
|
const size_t b_shape[] = { 1, 672, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op84, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #84" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op85, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #85" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op86, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #86" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op87, |
|
49, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #87" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op88, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #88" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op89, |
|
49, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #89" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op90, |
|
1, 49 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #90" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op91, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #91" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op92, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #92" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 960, 7, 7 }; |
|
const size_t b_shape[] = { 1, 960, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op93, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #93" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op94, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #94" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 160, 7, 7 }; |
|
const size_t b_shape[] = { 1, 160, 7, 7 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op95, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #95" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op96, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #96" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op97, |
|
49, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #97" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op98, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #98" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op99, |
|
49, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #99" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op100, |
|
1, 49 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #100" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op101, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #101" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op102, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #102" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 960, 7, 7 }; |
|
const size_t b_shape[] = { 1, 960, 1, 1 }; |
|
status = xnn_reshape_multiply_nd_f16( |
|
op103, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #103" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op104, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #104" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
{ |
|
const size_t a_shape[] = { 1, 160, 7, 7 }; |
|
const size_t b_shape[] = { 1, 160, 7, 7 }; |
|
status = xnn_reshape_add_nd_f16( |
|
op105, |
|
4, a_shape, 4, b_shape, |
|
threadpool); |
|
} |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #105" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nchw_f16( |
|
op106, |
|
1, 7, 7, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #106" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op107, |
|
49, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #107" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_ncw_f16( |
|
op108, |
|
1, 49 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #108" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nhwc_f16( |
|
op109, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #109" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_hardswish_nc_f16( |
|
op110, |
|
1, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #110" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_global_average_pooling_nwc_f16( |
|
op111, |
|
1, 1 , |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #111" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_reshape_convolution2d_nhwc_f16( |
|
op112, |
|
1, 1, 1, |
|
nullptr, nullptr, |
|
threadpool); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to reshape operation #112" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op0, |
|
v0.data(), v1.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #0" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op1, |
|
v1.data(), v2.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #1" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op2, |
|
v2.data(), v3.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #2" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op3, |
|
v3.data(), v4.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #3" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op4, |
|
v4.data() , v2.data() , v5.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #4" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op5, |
|
v5.data(), v6.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #5" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op6, |
|
v6.data(), v7.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #6" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op7, |
|
v7.data(), v8.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #7" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op8, |
|
v8.data(), v9.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #8" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op9, |
|
v9.data(), v10.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #9" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op10, |
|
v10.data(), v11.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #10" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op11, |
|
v11.data() , v8.data() , v12.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #11" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op12, |
|
v12.data(), v13.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #12" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op13, |
|
v13.data(), v14.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #13" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op14, |
|
v14.data(), v15.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #14" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op15, |
|
v15.data(), v16.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #15" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op16, |
|
v16.data(), v17.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #16" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op17, |
|
v14.data() , v17.data() , v18.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #17" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op18, |
|
v18.data(), v19.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #18" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op19, |
|
v19.data(), v20.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #19" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op20, |
|
v20.data(), v21.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #20" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op21, |
|
v21.data(), v22.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #21" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op22, |
|
v22.data(), v23.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #22" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op23, |
|
v23.data(), v24.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #23" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op24, |
|
v21.data() , v24.data() , v25.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #24" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op25, |
|
v25.data(), v26.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #25" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op26, |
|
v26.data() , v19.data() , v27.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #26" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op27, |
|
v27.data(), v28.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #27" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op28, |
|
v28.data(), v29.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #28" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op29, |
|
v29.data(), v30.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #29" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op30, |
|
v30.data(), v31.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #30" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op31, |
|
v31.data(), v32.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #31" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op32, |
|
v29.data() , v32.data() , v33.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #32" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op33, |
|
v33.data(), v34.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #33" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op34, |
|
v34.data() , v27.data() , v35.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #34" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op35, |
|
v35.data(), v36.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #35" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op36, |
|
v36.data(), v37.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #36" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op37, |
|
v37.data(), v38.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #37" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op38, |
|
v38.data(), v39.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #38" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op39, |
|
v39.data(), v40.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #39" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op40, |
|
v40.data(), v41.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #40" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op41, |
|
v41.data(), v42.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #41" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op42, |
|
v42.data(), v43.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #42" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op43, |
|
v43.data(), v44.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #43" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op44, |
|
v44.data(), v45.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #44" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op45, |
|
v45.data() , v40.data() , v46.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #45" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op46, |
|
v46.data(), v47.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #46" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op47, |
|
v47.data(), v48.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #47" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op48, |
|
v48.data(), v49.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #48" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op49, |
|
v49.data(), v50.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #49" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op50, |
|
v50.data(), v51.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #50" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op51, |
|
v51.data() , v46.data() , v52.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #51" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op52, |
|
v52.data(), v53.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #52" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op53, |
|
v53.data(), v54.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #53" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op54, |
|
v54.data(), v55.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #54" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op55, |
|
v55.data(), v56.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #55" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op56, |
|
v56.data(), v57.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #56" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op57, |
|
v57.data() , v52.data() , v58.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #57" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op58, |
|
v58.data(), v59.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #58" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op59, |
|
v59.data(), v60.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #59" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op60, |
|
v60.data(), v61.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #60" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op61, |
|
v61.data(), v62.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #61" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op62, |
|
v62.data(), v63.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #62" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op63, |
|
v63.data(), v64.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #63" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op64, |
|
v64.data(), v65.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #64" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op65, |
|
v62.data() , v65.data() , v66.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #65" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op66, |
|
v66.data(), v67.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #66" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op67, |
|
v67.data(), v68.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #67" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op68, |
|
v68.data(), v69.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #68" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op69, |
|
v69.data(), v70.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #69" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op70, |
|
v70.data(), v71.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #70" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op71, |
|
v71.data(), v72.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #71" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op72, |
|
v72.data(), v73.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #72" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op73, |
|
v73.data(), v74.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #73" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op74, |
|
v71.data() , v74.data() , v75.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #74" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op75, |
|
v75.data(), v76.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #75" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op76, |
|
v76.data() , v67.data() , v77.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #76" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op77, |
|
v77.data(), v78.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #77" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op78, |
|
v78.data(), v79.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #78" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op79, |
|
v79.data(), v80.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #79" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op80, |
|
v80.data(), v81.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #80" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op81, |
|
v81.data(), v82.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #81" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op82, |
|
v82.data(), v83.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #82" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op83, |
|
v83.data(), v84.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #83" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op84, |
|
v81.data() , v84.data() , v85.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #84" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op85, |
|
v85.data(), v86.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #85" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op86, |
|
v86.data(), v87.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #86" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op87, |
|
v87.data(), v88.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #87" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op88, |
|
v88.data(), v89.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #88" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op89, |
|
v89.data(), v90.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #89" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op90, |
|
v90.data(), v91.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #90" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op91, |
|
v91.data(), v92.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #91" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op92, |
|
v92.data(), v93.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #92" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op93, |
|
v90.data() , v93.data() , v94.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #93" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op94, |
|
v94.data(), v95.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #94" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op95, |
|
v95.data() , v86.data() , v96.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #95" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op96, |
|
v96.data(), v97.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #96" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op97, |
|
v97.data(), v98.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #97" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op98, |
|
v98.data(), v99.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #98" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op99, |
|
v99.data(), v100.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #99" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op100, |
|
v100.data(), v101.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #100" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op101, |
|
v101.data(), v102.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #101" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op102, |
|
v102.data(), v103.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #102" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_multiply_nd_f16( |
|
op103, |
|
v100.data() , v103.data() , v104.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #103" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op104, |
|
v104.data(), v105.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #104" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_add_nd_f16( |
|
op105, |
|
v105.data() , v96.data() , v106.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #105" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nchw_f16( |
|
op106, |
|
v106.data(), v107.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #106" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op107, |
|
v107.data(), v108.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #107" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_ncw_f16( |
|
op108, |
|
v108.data(), v109.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #108" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nhwc_f16( |
|
op109, |
|
v109.data(), v110.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #109" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_hardswish_nc_f16( |
|
op110, |
|
v110.data(), v111.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #110" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_global_average_pooling_nwc_f16( |
|
op111, |
|
v111.data(), v112.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #111" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
status = xnn_setup_convolution2d_nhwc_f16( |
|
op112, |
|
v112.data(), v113.data()); |
|
if (status != xnn_status_success) { |
|
std::cerr << "failed to setup operation #112" << std::endl; |
|
return ExecutionPlan(); |
|
} |
|
|
|
XNN_PRAGMA_CLANG("clang diagnostic push") |
|
XNN_PRAGMA_CLANG("clang diagnostic ignored \"-Wpessimizing-move\"") |
|
return operators; |
|
XNN_PRAGMA_CLANG("clang diagnostic pop") |
|
} |
|
|
|
} |
|
|