test / eval /f16-tanh-ulp.cc
Androidonnxfork's picture
Upload folder using huggingface_hub
8b7c501
raw
history blame
13.7 kB
// Copyright 2023 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <memory>
#include <numeric>
#include <random>
#include <vector>
#include <pthreadpool.h>
#include <benchmark/benchmark.h>
#include <fp16/fp16.h>
#include "bench/utils.h"
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/math-stubs.h>
constexpr uint16_t kNumSubnormalValues = 1024;
struct ComputeErrorContext {
const uint16_t* input;
const uint16_t* output;
float* error;
uint16_t num_flush_to_zero_values;
};
static void ComputeError(
struct ComputeErrorContext* context,
size_t start,
size_t range)
{
const uint16_t* input = context->input;
const uint16_t* output = context->output;
float* error = context->error;
for (size_t i = start; i < start + range; i++) {
uint16_t input_val = input[i];
uint16_t output_val = output[i];
#if XNN_ARCH_ARM || XNN_ARCH_ARM64 || XNN_ARCH_X86 || XNN_ARCH_X86_64
const uint16_t num_flush_to_zero_values = context->num_flush_to_zero_values;
const uint16_t abs_input_val = input_val & UINT16_C(0x7FFF);
if (abs_input_val < std::min<uint16_t>(num_flush_to_zero_values, kNumSubnormalValues)) {
// Replace subnormal inputs with signed zeroes
input_val = input_val & UINT16_C(0x8000);
} else if (abs_input_val < num_flush_to_zero_values) {
// For the smallest normalized floating-point numbers the implementation is likely to produce 0
// instead of the correct result (same as input) due to denormals in intermediate computations.
const uint16_t abs_output_val = output_val & UINT16_C(0x7FFF);
if (abs_output_val == 0) {
output_val = input_val;
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 || XNN_ARCH_X86 || XNN_ARCH_X86_64
const float output_ref = std::tanh(fp16_ieee_to_fp32_value(input_val));
const float abs_error = std::abs(output_ref - fp16_ieee_to_fp32_value(output_val));
const uint16_t output_abs = fp16_ieee_from_fp32_value(std::abs(output_ref));
const float output_ulp = fp16_ieee_to_fp32_value(output_abs + 1) - fp16_ieee_to_fp32_value(output_abs);
error[i] = float(abs_error / output_ulp);
}
}
static void TanhError(
benchmark::State& state,
xnn_f16_unary_math_fn tanh,
uint16_t num_flush_to_zero_values,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check != nullptr && !isa_check(state)) {
return;
}
// The smallest x for which tanhh(x) is not -1.0h (-0x1.204p+2h).
const uint16_t min_input = UINT16_C(0xC481);
// The largest x for which tanhh(x) is not 1.0h (0x1.204p+2h).
const uint16_t max_input = UINT16_C(0x4481);
// Number of elements in one block of inputs/outputs.
// Combining multiple elements in a block reduce function call overhead.
const size_t block_size = 16384;
// Number of elements in one parallelization tile. Worker threads process this many elements in each task.
const size_t tile_size = 64;
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> x(block_size);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> y(block_size);
std::vector<float> ulp_error(block_size);
float max_ulp_error = 0.0f;
ComputeErrorContext context;
context.input = x.data();
context.output = y.data();
context.error = ulp_error.data();
context.num_flush_to_zero_values = num_flush_to_zero_values;
for (auto _ : state) {
for (uint16_t n = min_input; int16_t(n) < 0; n -= block_size) {
for (uint16_t i = 0; i < block_size; i++) {
x[i] = std::max<uint16_t>(n - i, UINT16_C(0x8000));
}
std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
pthreadpool_parallelize_1d_tile_1d(
nullptr,
[&](size_t offset, size_t size) {
tanh(size * sizeof(uint16_t), x.data() + offset, y.data() + offset);
},
block_size, tile_size, /*flags=*/PTHREADPOOL_FLAG_DISABLE_DENORMALS);
pthreadpool_parallelize_1d_tile_1d(
/*threadpool=*/nullptr,
reinterpret_cast<pthreadpool_task_1d_tile_1d_t>(ComputeError),
static_cast<void*>(&context),
block_size, tile_size, /*flags=*/0);
max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error,
static_cast<const float& (*)(const float&, const float&)>(std::max<float>));
}
for (uint16_t n = 0; n < max_input; n += block_size) {
for (uint16_t i = 0; i < block_size; i++) {
x[i] = std::min<uint16_t>(n + i, max_input);
}
std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
pthreadpool_parallelize_1d_tile_1d(
nullptr,
[&](size_t offset, size_t size) {
tanh(size * sizeof(uint16_t), x.data() + offset, y.data() + offset);
},
block_size, tile_size, /*flags=*/PTHREADPOOL_FLAG_DISABLE_DENORMALS);
pthreadpool_parallelize_1d_tile_1d(
/*threadpool=*/nullptr,
reinterpret_cast<pthreadpool_task_1d_tile_1d_t>(ComputeError),
static_cast<void*>(&context),
block_size, tile_size, /*flags=*/0);
max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error,
static_cast<const float& (*)(const float&, const float&)>(std::max<float>));
}
}
state.counters["ULPERROR"] = benchmark::Counter(max_ulp_error);
}
#if XNN_ENABLE_ARM_FP16_VECTOR && XNN_ARCH_ARM64
BENCHMARK_CAPTURE(TanhError, aarch64_neonfp16arith_expm1minus_rr1_p3h1ts_div,
xnn_math_f16_tanh__aarch64_neonfp16arith_expm1minus_rr1_p3h1ts_div,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, aarch64_neonfp16arith_expm1minus_rr1_p3h2ts_div,
xnn_math_f16_tanh__aarch64_neonfp16arith_expm1minus_rr1_p3h2ts_div,
/*num_flush_to_zero_values=*/kNumSubnormalValues,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
#endif // XNN_ENABLE_ARM_FP16_VECTOR && XNN_ARCH_ARM64
#if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1fma,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1fma,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1fmaadj,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1fmaadj,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1recps,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1recps,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_nr1recpsadj,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_nr1recpsadj,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 1,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_recpe,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_recpe,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h1ts_recpeadj,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h1ts_recpeadj,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1fma,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1fma,
/*num_flush_to_zero_values=*/kNumSubnormalValues,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1fmaadj,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1fmaadj,
/*num_flush_to_zero_values=*/kNumSubnormalValues,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1recps,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1recps,
/*num_flush_to_zero_values=*/kNumSubnormalValues,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_nr1recpsadj,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_nr1recpsadj,
/*num_flush_to_zero_values=*/kNumSubnormalValues,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_recpe,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_recpe,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, neonfp16arith_expm1minus_rr1_p3h2ts_recpeadj,
xnn_math_f16_tanh__neonfp16arith_expm1minus_rr1_p3h2ts_recpeadj,
/*num_flush_to_zero_values=*/kNumSubnormalValues + 3,
benchmark::utils::CheckNEONFP16ARITH)
->Unit(benchmark::kMillisecond)
->Iterations(1);
#endif // XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64)
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
BENCHMARK_CAPTURE(TanhError, avx2_expm1minus_rr1_p3h2ts_div,
xnn_math_f16_tanh__avx2_expm1minus_rr1_p3h2ts_div,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckAVX2)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, avx2_expm1minus_rr1_p3h2ts_rcp,
xnn_math_f16_tanh__avx2_expm1minus_rr1_p3h2ts_rcp,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckAVX2)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, fma3_expm1minus_rr1_p3h2ts_div,
xnn_math_f16_tanh__fma3_expm1minus_rr1_p3h2ts_div,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckFMA3)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, fma3_expm1minus_rr1_p3h2ts_rcp,
xnn_math_f16_tanh__fma3_expm1minus_rr1_p3h2ts_rcp,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckFMA3)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, fma3_polynomial_p17h8t2,
xnn_math_f16_tanh__fma3_polynomial_p17h8t2,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckFMA3)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, fma3_polynomial_p19h9t2,
xnn_math_f16_tanh__fma3_polynomial_p19h9t2,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckFMA3)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, f16c_expm1minus_rr1_p3h2ts_div,
xnn_math_f16_tanh__f16c_expm1minus_rr1_p3h2ts_div,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckF16C)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, f16c_expm1minus_rr1_p3h2ts_rcp,
xnn_math_f16_tanh__f16c_expm1minus_rr1_p3h2ts_rcp,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckF16C)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, f16c_polynomial_p17h8t2,
xnn_math_f16_tanh__f16c_polynomial_p17h8t2,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckF16C)
->Unit(benchmark::kMillisecond)
->Iterations(1);
BENCHMARK_CAPTURE(TanhError, f16c_polynomial_p19h9t2,
xnn_math_f16_tanh__f16c_polynomial_p19h9t2,
/*num_flush_to_zero_values=*/0,
benchmark::utils::CheckF16C)
->Unit(benchmark::kMillisecond)
->Iterations(1);
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif