AnanthanarayananSeetharaman commited on
Commit
e1a62fc
1 Parent(s): f510878

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -38
README.md CHANGED
@@ -1,11 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # My Custom NER Model
2
 
3
- This is a custom Named Entity Recognition (NER) model fine-tuned on domain-specific data using a BERT-based architecture.
4
 
5
  ## Entities
6
- - `FACT`: Facts related to sales, revenue, etc.
7
- - `PRDC_CHAR`: Product characteristics like product names.
8
- - `MRKT_CHAR`: Market details like regions.
 
 
 
9
 
10
  ## Example Usage
11
 
@@ -23,37 +44,3 @@ ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
23
  text = "The SALES of BEER and WINE in TTL US is increasing."
24
  entities = ner_pipeline(text)
25
  print(entities)
26
-
27
- ## SAmple Output
28
- [
29
- {"entity": "FACT", "score": 0.98, "start": 4, "end": 9, "word": "SALES"},
30
- {"entity": "PRDC_CHAR", "score": 0.95, "start": 13, "end": 17, "word": "BEER"},
31
- {"entity": "PRDC_CHAR", "score": 0.94, "start": 22, "end": 26, "word": "WINE"},
32
- {"entity": "MRKT_CHAR", "score": 0.96, "start": 30, "end": 36, "word": "TTL US"}
33
- ]
34
-
35
-
36
- Training Details
37
-
38
- Base Model: distilbert-base-uncased
39
- Dataset: Custom dataset with 200 annotated sentences.
40
- Training Epochs: 3
41
- Learning Rate: 2e-5
42
-
43
-
44
- ## To use the model
45
- `
46
- from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
47
-
48
- # Load the model and tokenizer from Hugging Face
49
- model = AutoModelForTokenClassification.from_pretrained("username/my-custom-ner-model")
50
- tokenizer = AutoTokenizer.from_pretrained("username/my-custom-ner-model")
51
-
52
- # Create an NER pipeline
53
- ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
54
-
55
- # Test the pipeline
56
- text = "The SALES of BEER and WINE in TTL US is increasing."
57
- entities = ner_pipeline(text)
58
- print(entities)
59
- `
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - token-classification
5
+ - ner
6
+ - transformers
7
+ license: apache-2.0
8
+ datasets:
9
+ - custom-dataset
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ model_name: my-custom-ner-model
15
+ widget:
16
+ - text: "The SALES of BEER and WINE in TTL US is increasing."
17
+ ---
18
+
19
  # My Custom NER Model
20
 
21
+ This is a custom **Named Entity Recognition (NER)** model fine-tuned on domain-specific data using a **BERT-based architecture**.
22
 
23
  ## Entities
24
+ The model is trained to recognize the following entities:
25
+ - **`FACT`**: Facts related to sales, revenue, etc.
26
+ - **`PRDC_CHAR`**: Product characteristics like product names.
27
+ - **`MRKT_CHAR`**: Market details like regions.
28
+
29
+ ---
30
 
31
  ## Example Usage
32
 
 
44
  text = "The SALES of BEER and WINE in TTL US is increasing."
45
  entities = ner_pipeline(text)
46
  print(entities)