AnAmbitiousMonk commited on
Commit
86b6d22
1 Parent(s): 71d055c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 281.14 +/- 20.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8dc186af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8dc186b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8dc186c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8dc186ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fb8dc186d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fb8dc186dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb8dc186e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8dc186ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb8dc186f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8dc189040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8dc1890d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8dc189160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb8dc183390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676700167333803175, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0F9by8620978AKvqHcgr63Pvm9PkP4vAAAAAAAAAAA5rB9PWQdGD7oXuq9gs6RvnB9D7xlc3M7AAAAAAAAAACas6A8XINkuii2fzb6pX8xZ0Ydusldl7UAAIA/AACAPwAkD7x7sNe6+nqru95SjTwVd8M7CEJ1vQAAgD8AAIA/M3sou1KLkbt2siK81EGWPKoowrxg5X89AACAPwAAgD8AVSa9jCwQP9wuDTyQ+9e+b9hJvczFsj0AAAAAAAAAADMgND31KKk/HV17Pqag5L7plCU9M876PAAAAAAAAAAAzXy2O/bkrT9/W7Y9JRzTvoCUO7uYPza9AAAAAAAAAABtUgK+dT/RPgiwkj5vmOu+TTZBvFipIz4AAAAAAAAAAJobOb1DjVu8lm+MvCclQTtKaMA9gAI/vAAAgD8AAIA/WuicPcNtebrODAk5NzAYND3JGztf+B+4AACAPwAAgD+axR+8CqE+PLhlhLysWYW+SY1zvJYO67wAAAAAAAAAAM38WrtxQHE+mdcEPv78xb7oXbU9xw0oPQAAAAAAAAAAMy66PEiTn7rKF7ozq4XlrlxYvzpCcsizAACAPwAAgD+AMwE9w0w8OysWuL1r/16+friqvHf5C70AAAAAAAAAAFqKCz6cXKA+95ydvXvp2r5oy+Q97pEbPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInZ53Y0Fmc0CUhpRSlIwBbJRLw4wBdJRHQKQyg4I8hcJ1fZQoaAZoCWgPQwhC7iJMURlzQJSGlFKUaBVL5mgWR0CkMs8s189fdX2UKGgGaAloD0MI/OJSlTb7cECUhpRSlGgVS9doFkdApDLqUFB6bHV9lChoBmgJaA9DCI/C9SgcS3NAlIaUUpRoFUvbaBZHQKQzKfZmI0t1fZQoaAZoCWgPQwilZg+0At9vQJSGlFKUaBVL02gWR0CkM5Ys3AEddX2UKGgGaAloD0MIuFz92CQNcUCUhpRSlGgVS75oFkdApDOiISDh+HV9lChoBmgJaA9DCH2SO2wiu3BAlIaUUpRoFUvdaBZHQKQzp2+PBBR1fZQoaAZoCWgPQwjhRsoWSR5zQJSGlFKUaBVL4WgWR0CkM69DIBBBdX2UKGgGaAloD0MI8u7IWG3OckCUhpRSlGgVTX4CaBZHQKQztN47ihp1fZQoaAZoCWgPQwjKoxthUZBxQJSGlFKUaBVL4WgWR0CkNGS+xnnMdX2UKGgGaAloD0MItkqwOFzAc0CUhpRSlGgVS9BoFkdApDRr0voNeHV9lChoBmgJaA9DCNxJRPhXsHBAlIaUUpRoFUvEaBZHQKQ0d1gYxcp1fZQoaAZoCWgPQwhGlzeHK+FwQJSGlFKUaBVL1WgWR0CkNHzI/7iydX2UKGgGaAloD0MIcy1agLZlckCUhpRSlGgVS+JoFkdApDSEaKk2xnV9lChoBmgJaA9DCOtTjsmi/XBAlIaUUpRoFUvRaBZHQKQ0jCBPKuB1fZQoaAZoCWgPQwgd44qLo4lvQJSGlFKUaBVLyWgWR0CkNJQOOKfndX2UKGgGaAloD0MIwMsMG6Wyc0CUhpRSlGgVS9hoFkdApDTR5NXYDnV9lChoBmgJaA9DCCZvgJlvu29AlIaUUpRoFUvRaBZHQKQ1BDhLoOh1fZQoaAZoCWgPQwh6VtKK781xQJSGlFKUaBVL1GgWR0CkNSNhd+ocdX2UKGgGaAloD0MI93ZLckASc0CUhpRSlGgVS9doFkdApDVlCCz1LHV9lChoBmgJaA9DCJIHIot0Q3FAlIaUUpRoFUvIaBZHQKQ1svr4WUN1fZQoaAZoCWgPQwjUnSees8ZxQJSGlFKUaBVL1GgWR0CkNd3MINVjdX2UKGgGaAloD0MI2SQ/4hedcECUhpRSlGgVS+JoFkdApDXtbLU1AXV9lChoBmgJaA9DCHf1KjJ6gnFAlIaUUpRoFUvtaBZHQKQ2Fm7rcCZ1fZQoaAZoCWgPQwgzpIrilXByQJSGlFKUaBVL72gWR0CkNi7XYlIFdX2UKGgGaAloD0MImGvRAjSMcUCUhpRSlGgVS7hoFkdApDZR7NSqEXV9lChoBmgJaA9DCLXhsDRwr3JAlIaUUpRoFUvAaBZHQKQ2hog3cYZ1fZQoaAZoCWgPQwhpVyHlp1dzQJSGlFKUaBVL12gWR0CkNrBScbzcdX2UKGgGaAloD0MISl8IOa/mcECUhpRSlGgVS+RoFkdApDbn6O5rg3V9lChoBmgJaA9DCPYjRWTY7nBAlIaUUpRoFUvnaBZHQKQ2609hZyN1fZQoaAZoCWgPQwi0ci8wq3pyQJSGlFKUaBVL4mgWR0CkNvIrnTy8dX2UKGgGaAloD0MIEW3H1N0QckCUhpRSlGgVS9RoFkdApDcZInSfDnV9lChoBmgJaA9DCDxM++Z+8nFAlIaUUpRoFUvzaBZHQKQ3KJ/G2kV1fZQoaAZoCWgPQwj+YUuP5oByQJSGlFKUaBVL5GgWR0CkN5HX2/SIdX2UKGgGaAloD0MIcXZrmcwZc0CUhpRSlGgVS/BoFkdApDeRaaCtinV9lChoBmgJaA9DCDlf7L24ZXJAlIaUUpRoFUvaaBZHQKQ3ud7v5QB1fZQoaAZoCWgPQwjwGYnQiEVxQJSGlFKUaBVLzWgWR0CkN+APd2xIdX2UKGgGaAloD0MI+aBns+qucUCUhpRSlGgVS8toFkdApDgBC8e0X3V9lChoBmgJaA9DCBK9jGJ5HXFAlIaUUpRoFUvGaBZHQKQ4QTewcHZ1fZQoaAZoCWgPQwj2YignGhtzQJSGlFKUaBVL22gWR0CkOGGKqGUOdX2UKGgGaAloD0MI1Lt4P+5Xc0CUhpRSlGgVS+toFkdApDhktEofCHV9lChoBmgJaA9DCPhu88aJqXFAlIaUUpRoFUvYaBZHQKQ4lI5HVgB1fZQoaAZoCWgPQwjay7bTlnFyQJSGlFKUaBVLymgWR0CkOKD2JzkqdX2UKGgGaAloD0MIKXXJOMaEb0CUhpRSlGgVS8JoFkdApDiwoqkM1HV9lChoBmgJaA9DCO8gdqbQGG5AlIaUUpRoFUvCaBZHQKQ5EkleF+N1fZQoaAZoCWgPQwhyNh0BXIRzQJSGlFKUaBVL1WgWR0CkORjsD4gzdX2UKGgGaAloD0MI88e0Nk2VckCUhpRSlGgVS91oFkdApDk0vPC2t3V9lChoBmgJaA9DCNPAj2qYNXNAlIaUUpRoFUvdaBZHQKQ5aYTCcgB1fZQoaAZoCWgPQwhClZo90NZxQJSGlFKUaBVL/2gWR0CkOYLVOKwZdX2UKGgGaAloD0MIptWQuAdBc0CUhpRSlGgVS8VoFkdApDmWEIw/PnV9lChoBmgJaA9DCPGD86njMHJAlIaUUpRoFUvTaBZHQKQ5uXEZR9B1fZQoaAZoCWgPQwgyHxDoDAFzQJSGlFKUaBVLzGgWR0CkOc6i9IwudX2UKGgGaAloD0MINUHUfcALckCUhpRSlGgVS9poFkdApDo3lhgE2nV9lChoBmgJaA9DCK+UZYijRnJAlIaUUpRoFUvuaBZHQKQ6S2MKkVN1fZQoaAZoCWgPQwhpqbwdYYhwQJSGlFKUaBVLyGgWR0CkOms3yZrpdX2UKGgGaAloD0MIbFz/ro9Dc0CUhpRSlGgVS9xoFkdApDp8jNY8uHV9lChoBmgJaA9DCAdeLXfm629AlIaUUpRoFUvTaBZHQKQ6w+RoysV1fZQoaAZoCWgPQwh72AsFrEJzQJSGlFKUaBVL2WgWR0CkOure67NCdX2UKGgGaAloD0MIW3heKrbGckCUhpRSlGgVS/1oFkdApDr7teD3/XV9lChoBmgJaA9DCC0ly0no2nJAlIaUUpRoFUv9aBZHQKQ7L74zrNZ1fZQoaAZoCWgPQwiq9BPOLg5yQJSGlFKUaBVL02gWR0CkOz/8dgfEdX2UKGgGaAloD0MIDMo0mlxtc0CUhpRSlGgVS9RoFkdApDtk0WM0g3V9lChoBmgJaA9DCAyuuaN/IXBAlIaUUpRoFUvfaBZHQKQ7ZgpjMFF1fZQoaAZoCWgPQwgPDCB86BFwQJSGlFKUaBVLz2gWR0CkO4tpM6BAdX2UKGgGaAloD0MIK/cCs0K7cUCUhpRSlGgVS8JoFkdApDuWXRgJC3V9lChoBmgJaA9DCEmcFVFT1HFAlIaUUpRoFUvCaBZHQKQ7ty6MBIZ1fZQoaAZoCWgPQwhEGD+N+4twQJSGlFKUaBVL2GgWR0CkO7cABDG+dX2UKGgGaAloD0MIh+EjYkocc0CUhpRSlGgVS+5oFkdApDw3w5NoJ3V9lChoBmgJaA9DCLq8OVwrBnFAlIaUUpRoFUvQaBZHQKQ8n3Zf2K51fZQoaAZoCWgPQwjBcK5hRgVzQJSGlFKUaBVL4WgWR0CkPJszVMEidX2UKGgGaAloD0MIuTMTDCfZckCUhpRSlGgVS/FoFkdApDyzrX18LXV9lChoBmgJaA9DCOqT3GFTRXFAlIaUUpRoFUu+aBZHQKQ8uQEIPbx1fZQoaAZoCWgPQwgpBd1eUnlyQJSGlFKUaBVL5GgWR0CkPMN7jT8YdX2UKGgGaAloD0MIfzScMjfbbkCUhpRSlGgVS8toFkdApDz9m6GxlnV9lChoBmgJaA9DCHVVoBaDam9AlIaUUpRoFUvIaBZHQKQ9Bc9GI9F1fZQoaAZoCWgPQwgwgsZMIsFvQJSGlFKUaBVLumgWR0CkPR9fb9IgdX2UKGgGaAloD0MIMBAEyNAfcUCUhpRSlGgVS8JoFkdApD1VZaFEiXV9lChoBmgJaA9DCEyJJHoZeG9AlIaUUpRoFUvbaBZHQKQ9Yj1PFeh1fZQoaAZoCWgPQwjAlleuN/lxQJSGlFKUaBVLwWgWR0CkPXbuMMqjdX2UKGgGaAloD0MIwwyNJwJqbkCUhpRSlGgVS89oFkdApD2ieTV2BHV9lChoBmgJaA9DCPCjGvZ7p3BAlIaUUpRoFUvHaBZHQKQ9sYF7laN1fZQoaAZoCWgPQwicTrLVJSBxQJSGlFKUaBVL32gWR0CkPerXtjTbdX2UKGgGaAloD0MIGmt/Z7tuc0CUhpRSlGgVTRoBaBZHQKQ+KAHVwxZ1fZQoaAZoCWgPQwgebRyxFhlyQJSGlFKUaBVLzGgWR0CkPsKrilzmdX2UKGgGaAloD0MIsRU0LXEBcUCUhpRSlGgVS9VoFkdApD7Jib2DhHV9lChoBmgJaA9DCJqUgm6vFXJAlIaUUpRoFUv9aBZHQKQ+0UYbbUR1fZQoaAZoCWgPQwi8Wu7MxF9xQJSGlFKUaBVL3WgWR0CkPv5Oi35OdX2UKGgGaAloD0MIfZbnwd0DckCUhpRSlGgVS+poFkdApD8Fv60pmXV9lChoBmgJaA9DCNMRwM3ijHFAlIaUUpRoFUvpaBZHQKQ/LmQr+YN1fZQoaAZoCWgPQwjAXmHBPRNyQJSGlFKUaBVL22gWR0CkP0j6N2kjdX2UKGgGaAloD0MIMNY3MHl7ckCUhpRSlGgVS99oFkdApD9Lq6e5F3V9lChoBmgJaA9DCHNnJhhOi25AlIaUUpRoFUvWaBZHQKQ/Vz4DcM51fZQoaAZoCWgPQwjmIVM+BKdxQJSGlFKUaBVLxWgWR0CkP2/2saKldX2UKGgGaAloD0MIchWL39RGckCUhpRSlGgVS75oFkdApD90Zk0783V9lChoBmgJaA9DCIQSZtr+MnNAlIaUUpRoFUvSaBZHQKQ/gZ6Uqx11fZQoaAZoCWgPQwioyCHiJgZwQJSGlFKUaBVL3WgWR0CkP+MQd0aIdX2UKGgGaAloD0MISQ9Dq9M2cUCUhpRSlGgVS8doFkdApD/3buc+aHV9lChoBmgJaA9DCANEwYzpl3FAlIaUUpRoFUvfaBZHQKQ/+A2AG0N1fZQoaAZoCWgPQwhruTMTDKhyQJSGlFKUaBVL92gWR0CkQLnYg7o0dX2UKGgGaAloD0MIvAZ96e0CckCUhpRSlGgVS8hoFkdApEDZDeCTU3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v8.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a99c45c7979a15f84215016f3b6f70ad972ae7da16e9c833f54832251360de0
3
+ size 147296
ppo-LunarLander-v8/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v8/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8dc186af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8dc186b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8dc186c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8dc186ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb8dc186d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb8dc186dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb8dc186e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8dc186ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb8dc186f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8dc189040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8dc1890d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8dc189160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb8dc183390>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 2031616,
47
+ "_total_timesteps": 2000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676700167333803175,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0F9by8620978AKvqHcgr63Pvm9PkP4vAAAAAAAAAAA5rB9PWQdGD7oXuq9gs6RvnB9D7xlc3M7AAAAAAAAAACas6A8XINkuii2fzb6pX8xZ0Ydusldl7UAAIA/AACAPwAkD7x7sNe6+nqru95SjTwVd8M7CEJ1vQAAgD8AAIA/M3sou1KLkbt2siK81EGWPKoowrxg5X89AACAPwAAgD8AVSa9jCwQP9wuDTyQ+9e+b9hJvczFsj0AAAAAAAAAADMgND31KKk/HV17Pqag5L7plCU9M876PAAAAAAAAAAAzXy2O/bkrT9/W7Y9JRzTvoCUO7uYPza9AAAAAAAAAABtUgK+dT/RPgiwkj5vmOu+TTZBvFipIz4AAAAAAAAAAJobOb1DjVu8lm+MvCclQTtKaMA9gAI/vAAAgD8AAIA/WuicPcNtebrODAk5NzAYND3JGztf+B+4AACAPwAAgD+axR+8CqE+PLhlhLysWYW+SY1zvJYO67wAAAAAAAAAAM38WrtxQHE+mdcEPv78xb7oXbU9xw0oPQAAAAAAAAAAMy66PEiTn7rKF7ozq4XlrlxYvzpCcsizAACAPwAAgD+AMwE9w0w8OysWuL1r/16+friqvHf5C70AAAAAAAAAAFqKCz6cXKA+95ydvXvp2r5oy+Q97pEbPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInZ53Y0Fmc0CUhpRSlIwBbJRLw4wBdJRHQKQyg4I8hcJ1fZQoaAZoCWgPQwhC7iJMURlzQJSGlFKUaBVL5mgWR0CkMs8s189fdX2UKGgGaAloD0MI/OJSlTb7cECUhpRSlGgVS9doFkdApDLqUFB6bHV9lChoBmgJaA9DCI/C9SgcS3NAlIaUUpRoFUvbaBZHQKQzKfZmI0t1fZQoaAZoCWgPQwilZg+0At9vQJSGlFKUaBVL02gWR0CkM5Ys3AEddX2UKGgGaAloD0MIuFz92CQNcUCUhpRSlGgVS75oFkdApDOiISDh+HV9lChoBmgJaA9DCH2SO2wiu3BAlIaUUpRoFUvdaBZHQKQzp2+PBBR1fZQoaAZoCWgPQwjhRsoWSR5zQJSGlFKUaBVL4WgWR0CkM69DIBBBdX2UKGgGaAloD0MI8u7IWG3OckCUhpRSlGgVTX4CaBZHQKQztN47ihp1fZQoaAZoCWgPQwjKoxthUZBxQJSGlFKUaBVL4WgWR0CkNGS+xnnMdX2UKGgGaAloD0MItkqwOFzAc0CUhpRSlGgVS9BoFkdApDRr0voNeHV9lChoBmgJaA9DCNxJRPhXsHBAlIaUUpRoFUvEaBZHQKQ0d1gYxcp1fZQoaAZoCWgPQwhGlzeHK+FwQJSGlFKUaBVL1WgWR0CkNHzI/7iydX2UKGgGaAloD0MIcy1agLZlckCUhpRSlGgVS+JoFkdApDSEaKk2xnV9lChoBmgJaA9DCOtTjsmi/XBAlIaUUpRoFUvRaBZHQKQ0jCBPKuB1fZQoaAZoCWgPQwgd44qLo4lvQJSGlFKUaBVLyWgWR0CkNJQOOKfndX2UKGgGaAloD0MIwMsMG6Wyc0CUhpRSlGgVS9hoFkdApDTR5NXYDnV9lChoBmgJaA9DCCZvgJlvu29AlIaUUpRoFUvRaBZHQKQ1BDhLoOh1fZQoaAZoCWgPQwh6VtKK781xQJSGlFKUaBVL1GgWR0CkNSNhd+ocdX2UKGgGaAloD0MI93ZLckASc0CUhpRSlGgVS9doFkdApDVlCCz1LHV9lChoBmgJaA9DCJIHIot0Q3FAlIaUUpRoFUvIaBZHQKQ1svr4WUN1fZQoaAZoCWgPQwjUnSees8ZxQJSGlFKUaBVL1GgWR0CkNd3MINVjdX2UKGgGaAloD0MI2SQ/4hedcECUhpRSlGgVS+JoFkdApDXtbLU1AXV9lChoBmgJaA9DCHf1KjJ6gnFAlIaUUpRoFUvtaBZHQKQ2Fm7rcCZ1fZQoaAZoCWgPQwgzpIrilXByQJSGlFKUaBVL72gWR0CkNi7XYlIFdX2UKGgGaAloD0MImGvRAjSMcUCUhpRSlGgVS7hoFkdApDZR7NSqEXV9lChoBmgJaA9DCLXhsDRwr3JAlIaUUpRoFUvAaBZHQKQ2hog3cYZ1fZQoaAZoCWgPQwhpVyHlp1dzQJSGlFKUaBVL12gWR0CkNrBScbzcdX2UKGgGaAloD0MISl8IOa/mcECUhpRSlGgVS+RoFkdApDbn6O5rg3V9lChoBmgJaA9DCPYjRWTY7nBAlIaUUpRoFUvnaBZHQKQ2609hZyN1fZQoaAZoCWgPQwi0ci8wq3pyQJSGlFKUaBVL4mgWR0CkNvIrnTy8dX2UKGgGaAloD0MIEW3H1N0QckCUhpRSlGgVS9RoFkdApDcZInSfDnV9lChoBmgJaA9DCDxM++Z+8nFAlIaUUpRoFUvzaBZHQKQ3KJ/G2kV1fZQoaAZoCWgPQwj+YUuP5oByQJSGlFKUaBVL5GgWR0CkN5HX2/SIdX2UKGgGaAloD0MIcXZrmcwZc0CUhpRSlGgVS/BoFkdApDeRaaCtinV9lChoBmgJaA9DCDlf7L24ZXJAlIaUUpRoFUvaaBZHQKQ3ud7v5QB1fZQoaAZoCWgPQwjwGYnQiEVxQJSGlFKUaBVLzWgWR0CkN+APd2xIdX2UKGgGaAloD0MI+aBns+qucUCUhpRSlGgVS8toFkdApDgBC8e0X3V9lChoBmgJaA9DCBK9jGJ5HXFAlIaUUpRoFUvGaBZHQKQ4QTewcHZ1fZQoaAZoCWgPQwj2YignGhtzQJSGlFKUaBVL22gWR0CkOGGKqGUOdX2UKGgGaAloD0MI1Lt4P+5Xc0CUhpRSlGgVS+toFkdApDhktEofCHV9lChoBmgJaA9DCPhu88aJqXFAlIaUUpRoFUvYaBZHQKQ4lI5HVgB1fZQoaAZoCWgPQwjay7bTlnFyQJSGlFKUaBVLymgWR0CkOKD2JzkqdX2UKGgGaAloD0MIKXXJOMaEb0CUhpRSlGgVS8JoFkdApDiwoqkM1HV9lChoBmgJaA9DCO8gdqbQGG5AlIaUUpRoFUvCaBZHQKQ5EkleF+N1fZQoaAZoCWgPQwhyNh0BXIRzQJSGlFKUaBVL1WgWR0CkORjsD4gzdX2UKGgGaAloD0MI88e0Nk2VckCUhpRSlGgVS91oFkdApDk0vPC2t3V9lChoBmgJaA9DCNPAj2qYNXNAlIaUUpRoFUvdaBZHQKQ5aYTCcgB1fZQoaAZoCWgPQwhClZo90NZxQJSGlFKUaBVL/2gWR0CkOYLVOKwZdX2UKGgGaAloD0MIptWQuAdBc0CUhpRSlGgVS8VoFkdApDmWEIw/PnV9lChoBmgJaA9DCPGD86njMHJAlIaUUpRoFUvTaBZHQKQ5uXEZR9B1fZQoaAZoCWgPQwgyHxDoDAFzQJSGlFKUaBVLzGgWR0CkOc6i9IwudX2UKGgGaAloD0MINUHUfcALckCUhpRSlGgVS9poFkdApDo3lhgE2nV9lChoBmgJaA9DCK+UZYijRnJAlIaUUpRoFUvuaBZHQKQ6S2MKkVN1fZQoaAZoCWgPQwhpqbwdYYhwQJSGlFKUaBVLyGgWR0CkOms3yZrpdX2UKGgGaAloD0MIbFz/ro9Dc0CUhpRSlGgVS9xoFkdApDp8jNY8uHV9lChoBmgJaA9DCAdeLXfm629AlIaUUpRoFUvTaBZHQKQ6w+RoysV1fZQoaAZoCWgPQwh72AsFrEJzQJSGlFKUaBVL2WgWR0CkOure67NCdX2UKGgGaAloD0MIW3heKrbGckCUhpRSlGgVS/1oFkdApDr7teD3/XV9lChoBmgJaA9DCC0ly0no2nJAlIaUUpRoFUv9aBZHQKQ7L74zrNZ1fZQoaAZoCWgPQwiq9BPOLg5yQJSGlFKUaBVL02gWR0CkOz/8dgfEdX2UKGgGaAloD0MIDMo0mlxtc0CUhpRSlGgVS9RoFkdApDtk0WM0g3V9lChoBmgJaA9DCAyuuaN/IXBAlIaUUpRoFUvfaBZHQKQ7ZgpjMFF1fZQoaAZoCWgPQwgPDCB86BFwQJSGlFKUaBVLz2gWR0CkO4tpM6BAdX2UKGgGaAloD0MIK/cCs0K7cUCUhpRSlGgVS8JoFkdApDuWXRgJC3V9lChoBmgJaA9DCEmcFVFT1HFAlIaUUpRoFUvCaBZHQKQ7ty6MBIZ1fZQoaAZoCWgPQwhEGD+N+4twQJSGlFKUaBVL2GgWR0CkO7cABDG+dX2UKGgGaAloD0MIh+EjYkocc0CUhpRSlGgVS+5oFkdApDw3w5NoJ3V9lChoBmgJaA9DCLq8OVwrBnFAlIaUUpRoFUvQaBZHQKQ8n3Zf2K51fZQoaAZoCWgPQwjBcK5hRgVzQJSGlFKUaBVL4WgWR0CkPJszVMEidX2UKGgGaAloD0MIuTMTDCfZckCUhpRSlGgVS/FoFkdApDyzrX18LXV9lChoBmgJaA9DCOqT3GFTRXFAlIaUUpRoFUu+aBZHQKQ8uQEIPbx1fZQoaAZoCWgPQwgpBd1eUnlyQJSGlFKUaBVL5GgWR0CkPMN7jT8YdX2UKGgGaAloD0MIfzScMjfbbkCUhpRSlGgVS8toFkdApDz9m6GxlnV9lChoBmgJaA9DCHVVoBaDam9AlIaUUpRoFUvIaBZHQKQ9Bc9GI9F1fZQoaAZoCWgPQwgwgsZMIsFvQJSGlFKUaBVLumgWR0CkPR9fb9IgdX2UKGgGaAloD0MIMBAEyNAfcUCUhpRSlGgVS8JoFkdApD1VZaFEiXV9lChoBmgJaA9DCEyJJHoZeG9AlIaUUpRoFUvbaBZHQKQ9Yj1PFeh1fZQoaAZoCWgPQwjAlleuN/lxQJSGlFKUaBVLwWgWR0CkPXbuMMqjdX2UKGgGaAloD0MIwwyNJwJqbkCUhpRSlGgVS89oFkdApD2ieTV2BHV9lChoBmgJaA9DCPCjGvZ7p3BAlIaUUpRoFUvHaBZHQKQ9sYF7laN1fZQoaAZoCWgPQwicTrLVJSBxQJSGlFKUaBVL32gWR0CkPerXtjTbdX2UKGgGaAloD0MIGmt/Z7tuc0CUhpRSlGgVTRoBaBZHQKQ+KAHVwxZ1fZQoaAZoCWgPQwgebRyxFhlyQJSGlFKUaBVLzGgWR0CkPsKrilzmdX2UKGgGaAloD0MIsRU0LXEBcUCUhpRSlGgVS9VoFkdApD7Jib2DhHV9lChoBmgJaA9DCJqUgm6vFXJAlIaUUpRoFUv9aBZHQKQ+0UYbbUR1fZQoaAZoCWgPQwi8Wu7MxF9xQJSGlFKUaBVL3WgWR0CkPv5Oi35OdX2UKGgGaAloD0MIfZbnwd0DckCUhpRSlGgVS+poFkdApD8Fv60pmXV9lChoBmgJaA9DCNMRwM3ijHFAlIaUUpRoFUvpaBZHQKQ/LmQr+YN1fZQoaAZoCWgPQwjAXmHBPRNyQJSGlFKUaBVL22gWR0CkP0j6N2kjdX2UKGgGaAloD0MIMNY3MHl7ckCUhpRSlGgVS99oFkdApD9Lq6e5F3V9lChoBmgJaA9DCHNnJhhOi25AlIaUUpRoFUvWaBZHQKQ/Vz4DcM51fZQoaAZoCWgPQwjmIVM+BKdxQJSGlFKUaBVLxWgWR0CkP2/2saKldX2UKGgGaAloD0MIchWL39RGckCUhpRSlGgVS75oFkdApD90Zk0783V9lChoBmgJaA9DCIQSZtr+MnNAlIaUUpRoFUvSaBZHQKQ/gZ6Uqx11fZQoaAZoCWgPQwioyCHiJgZwQJSGlFKUaBVL3WgWR0CkP+MQd0aIdX2UKGgGaAloD0MISQ9Dq9M2cUCUhpRSlGgVS8doFkdApD/3buc+aHV9lChoBmgJaA9DCANEwYzpl3FAlIaUUpRoFUvfaBZHQKQ/+A2AG0N1fZQoaAZoCWgPQwhruTMTDKhyQJSGlFKUaBVL92gWR0CkQLnYg7o0dX2UKGgGaAloD0MIvAZ96e0CckCUhpRSlGgVS8hoFkdApEDZDeCTU3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 496,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v8/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29d50cca57c2b58286f834c90776840c86dcc5a2e28b24cbcfe456bb8ebc52de
3
+ size 87929
ppo-LunarLander-v8/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af774737973af7b285f54c7618233c56eac02ed12f3892171259359dd8c6e8f4
3
+ size 43393
ppo-LunarLander-v8/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v8/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (215 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 281.1435664452699, "std_reward": 20.701210419635732, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T06:54:16.574562"}