Ammok commited on
Commit
2a17aae
1 Parent(s): e8de6e7

reinforcement-learning-lunar-lander

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.01 +/- 19.43
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d8136052170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d8136052200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d8136052290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d8136052320>", "_build": "<function ActorCriticPolicy._build at 0x7d81360523b0>", "forward": "<function ActorCriticPolicy.forward at 0x7d8136052440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d81360524d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d8136052560>", "_predict": "<function ActorCriticPolicy._predict at 0x7d81360525f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d8136052680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d8136052710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d81360527a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d813604b840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690555922457579639, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpfiL32JHW6ylCEOWy0AzWom806JbiXuAAAgD8AAIA/2mmNPWpSnz/SJcw+n4XDvgj3GT3OpCQ+AAAAAAAAAADmyQS9KVwJutETtToNpAa1JHlvu4Ud1LkAAIA/AACAPzN0v717Op+6jpmJuX65qrXOmcM6A+KeOAAAAAAAAIA/QGWUvVyTQrrLpYy5/+qFtIBDSjoKeqY4AACAPwAAgD/m4ju9FLiXumqpCjm0iAE0J3HSuu5BILgAAIA/AACAPxoZtb1I84S6mAKkuhoqmbUq/J+5qTm/OQAAAAAAAIA/GpYvvXuGj7pDPHS5Hn9ltF4XhLp5to04AACAPwAAgD/NBgc8uJ7puXlDjjlNada0tk+mu33nprgAAIA/AACAP+Z3Eb0pKD26emMEufcsBrTCK946jpUcOAAAgD8AAIA/AFY6va6pkbpu5vA5PaIjtQMATzpxewu5AACAPwAAgD/aNJS94RyquqLfajfCZHkyl27COYhvhrYAAIA/AACAP2YWGb15skY/ou3tvNcqL74b/x+96ChBvQAAAAAAAAAAAEfCvXvCibpez0Y7wVq+NnD8Szs6XGe6AACAPwAAgD9mGpg8KfBNuqqyTLr1Yru1HNowOpb1bTkAAIA/AACAPxqITD0pbBe6ID+EO9dBD7ar8TG7c/CZugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGU9oKc/dIqMAWyUTegDjAF0lEdAoYGm3+dbxHV9lChoBkdAZNjri2lVLmgHTegDaAhHQKGCVbdJrcl1fZQoaAZHQGKEnvlU6xRoB03oA2gIR0Chit5a/yoXdX2UKGgGR0BlYurZJ04jaAdN6ANoCEdAoYroUtZmqnV9lChoBkdAVO5EVnEl3WgHTegDaAhHQKGN1yXlbNd1fZQoaAZHQGPVmr8zhxZoB03oA2gIR0Chj6668QI2dX2UKGgGR0BlkFFKCg9NaAdN6ANoCEdAoZD8nw5NoXV9lChoBkdAZn8eYlY2bWgHTegDaAhHQKGRiAPNFBp1fZQoaAZHQFpETYukDZFoB03oA2gIR0ChlBfoq0+ldX2UKGgGR0BxDziZOSGKaAdNpwNoCEdAoZVmgL7XQXV9lChoBkdAYRhRTjvNNmgHTegDaAhHQKGWE6kqMFV1fZQoaAZHQGQwpBomG/NoB03oA2gIR0ChmH0Uwi7kdX2UKGgGR0BkC9YKYzBRaAdN6ANoCEdAoZjl2q1gIHV9lChoBkdAX81U0elsQGgHTegDaAhHQKGZ1kXk5p91fZQoaAZHQGKUEwFkhA5oB03oA2gIR0ChoPophF3IdX2UKGgGR0Be1vQ8fV7QaAdN6ANoCEdAoaKfrpqynnV9lChoBkdAYY9X1anrIGgHTegDaAhHQKGwJzd1uBN1fZQoaAZHQF/MkU9IPLBoB03oA2gIR0ChsORSP2f1dX2UKGgGR0BrDdIy0rsjaAdNWQFoCEdAobbg+6iCa3V9lChoBkdAZK2blRxcV2gHTegDaAhHQKG33MsYl6Z1fZQoaAZHQF+sD15B1LdoB03oA2gIR0Cht+c5jpcHdX2UKGgGR0BjgvE87p3YaAdN6ANoCEdAobtmx6fJ3nV9lChoBkdAYEVu4PPLPmgHTegDaAhHQKG97SNOuaF1fZQoaAZHQF11Y2Kl54ZoB03oA2gIR0Chv3C9AX2vdX2UKGgGR0Bk7dAgPmPpaAdN6ANoCEdAocAMEJSiunV9lChoBkdAbsssAeaKDWgHTVkDaAhHQKHAFpztCzF1fZQoaAZHQD6yg6EJ0GNoB00BAWgIR0ChwiF4keIVdX2UKGgGR0Bd/rdi2DxtaAdN6ANoCEdAocKcvmHP/3V9lChoBkdAZiyG34Kx92gHTegDaAhHQKHD7Rb8m8d1fZQoaAZHQGQT1qFh5PdoB03oA2gIR0ChxuwosqaxdX2UKGgGR0BjYgnWrfcfaAdN6ANoCEdAocdPBeokzHV9lChoBkdAZGut5D7ZWmgHTegDaAhHQKHIOz544ZN1fZQoaAZHQGJh3/xUedVoB03oA2gIR0Ch0Au2iL2pdX2UKGgGR0Bi41utOmBOaAdN6ANoCEdAod83dCVrynV9lChoBkdAWoLc/MW43GgHTegDaAhHQKHgDzpX6qN1fZQoaAZHQGI1m7jDKo1oB03oA2gIR0Ch5s6hg3LndX2UKGgGR0BiYNXmvGIbaAdN6ANoCEdAoefN9nbqQnV9lChoBkdAYom/OdGy5mgHTegDaAhHQKHq4Pe54GF1fZQoaAZHQGeC070WdmRoB03oA2gIR0Ch7XpaaCtjdX2UKGgGR0BfL0kB0ZFYaAdN6ANoCEdAoe9+9cry2HV9lChoBkdAYua9ECvHLmgHTegDaAhHQKHwaetCAtp1fZQoaAZHQGV0q5sj3VVoB03oA2gIR0Ch8HoFFDv3dX2UKGgGR0BeVNQO4G2UaAdN6ANoCEdAofLuzIFNcnV9lChoBkdAYJFO7g88tGgHTegDaAhHQKHzZYBeXzF1fZQoaAZHQGba2TPjXFtoB03oA2gIR0Ch9Ie/Ho5hdX2UKGgGR0BkaAE2YOUdaAdN6ANoCEdAofdmALApKHV9lChoBkdAYAh74zrNW2gHTegDaAhHQKH3w+oLofV1fZQoaAZHQGCrDKHO8kFoB03oA2gIR0Ch+JCj1wo9dX2UKGgGR0BnXKk0rK/3aAdN6ANoCEdAof9ERYigTXV9lChoBkdAbLFxn3+MqGgHTd4CaAhHQKIAzC9h7Vt1fZQoaAZHQFvJYuCf6GhoB03oA2gIR0CiDW7o0Q9SdX2UKGgGR0Bh+tFlTWGzaAdN6ANoCEdAog4dL39JjHV9lChoBkdAcKeDifg75mgHTU0DaAhHQKIPOJ40Mw11fZQoaAZHQF7bMXrMTvloB03oA2gIR0CiF1wK8cuKdX2UKGgGR0Be3FbVz6rOaAdN6ANoCEdAohlEMkQf63V9lChoBkdAX/xz7uUliWgHTegDaAhHQKIaranrIHV1fZQoaAZHQGCUXh4t6HFoB03oA2gIR0CiG0VdxAB1dX2UKGgGR0Bn7sf3evZAaAdN6ANoCEdAohtP62v0RXV9lChoBkdAZate+mFajmgHTegDaAhHQKIdcotthux1fZQoaAZHQGRkzdtVJcxoB03oA2gIR0CiHesq8UVSdX2UKGgGR0BkYh/oaDPGaAdN6ANoCEdAoh9L9Q40dnV9lChoBkdAY9XN6gM+eWgHTegDaAhHQKIjPguRLbp1fZQoaAZHQF0f9Pk7wKBoB03oA2gIR0CiI8bhm5DrdX2UKGgGR0Bi8HRJEpiJaAdN6ANoCEdAoiT8pRXOnnV9lChoBkdAYaW580DU3GgHTegDaAhHQKIsJ4ptrKx1fZQoaAZHQFnsS26TW5JoB03oA2gIR0CiLb0lqrR0dX2UKGgGR0BgcMJjUd7waAdN6ANoCEdAojjP752yLXV9lChoBkdAZfxnnMdLhGgHTegDaAhHQKI5xKFqSHN1fZQoaAZHQGctsNlRP45oB03oA2gIR0CiO0xfv4M4dX2UKGgGR0BqY8AYHgP3aAdN9gJoCEdAoj1aCOFQEnV9lChoBkdAcfuGyon8bmgHTU4DaAhHQKJCTrKvFFV1fZQoaAZHQGDcjLB9Cu5oB03oA2gIR0CiQ9OgHu7ZdX2UKGgGR0BiDoaaTfSAaAdN6ANoCEdAokb7IHTqjnV9lChoBkdAYyttWMju8mgHTegDaAhHQKJHlW8RL9N1fZQoaAZHQGRkePBBRhtoB03oA2gIR0CiSaljNIK/dX2UKGgGR0BmKi1uzhP1aAdN6ANoCEdAokokP8Q7LnV9lChoBkdAZSSZsKsuF2gHTegDaAhHQKJLcbRWtEJ1fZQoaAZHQGSlfffoA4poB03oA2gIR0CiTolpXZGsdX2UKGgGR0Bvob8R+SbIaAdN7wJoCEdAok62Q6p5vHV9lChoBkdAY0GaRZEDyWgHTegDaAhHQKJO7vQWvbJ1fZQoaAZHQGF5ns9jgAJoB03oA2gIR0CiT8rWAf+1dX2UKGgGR0Bsnw150KZ2aAdNfgFoCEdAolAvcpLEk3V9lChoBkdAY55zGxUvPGgHTegDaAhHQKJZ2NuLrHF1fZQoaAZHQGAMQkX1rZdoB03oA2gIR0CiZaGorFwUdX2UKGgGR0Bm+kWXTmW/aAdN6ANoCEdAomZz7ZWaMXV9lChoBkdAXL7PRiPQwGgHTegDaAhHQKJn0FIuoP11fZQoaAZHQGRG4150KZ5oB03oA2gIR0CiaabuUliSdX2UKGgGR0BlGHN9ph4MaAdN6ANoCEdAonAw7eVLSXV9lChoBkdAY5kqhlDneWgHTegDaAhHQKJ2L/tpmEp1fZQoaAZHQGCQsBp5/spoB03oA2gIR0CidvkLH+6zdX2UKGgGR0BnZPokiUxEaAdN6ANoCEdAonlv7tReknV9lChoBkdAZoyHMUypJmgHTegDaAhHQKJ5/Kji4rl1fZQoaAZHQGUD//NqxkdoB03oA2gIR0Cie1b/XGwSdX2UKGgGR0BoEWwosqaxaAdN6ANoCEdAon5v2saKk3V9lChoBkdAYoLerMkhR2gHTegDaAhHQKJ+mMKkVN51fZQoaAZHQGHJXFDOTq1oB03oA2gIR0CiftO76Hj7dX2UKGgGR0Bla8xdpqREaAdN6ANoCEdAon+gRK6FunV9lChoBkdAYorG9YfW+WgHTegDaAhHQKKAC6DGtIV1fZQoaAZHQGVZW3z+WGBoB03oA2gIR0CiiO2nCO3ldX2UKGgGR0BitcwevIOpaAdN6ANoCEdAooz8rK/203VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3388753ee33ebb364ebc44d19a752aadcd70c74ff70dd83430be00d14697f82c
3
+ size 146757
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d8136052170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d8136052200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d8136052290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d8136052320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d81360523b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d8136052440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d81360524d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d8136052560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d81360525f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d8136052680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d8136052710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d81360527a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d813604b840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690555922457579639,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpfiL32JHW6ylCEOWy0AzWom806JbiXuAAAgD8AAIA/2mmNPWpSnz/SJcw+n4XDvgj3GT3OpCQ+AAAAAAAAAADmyQS9KVwJutETtToNpAa1JHlvu4Ud1LkAAIA/AACAPzN0v717Op+6jpmJuX65qrXOmcM6A+KeOAAAAAAAAIA/QGWUvVyTQrrLpYy5/+qFtIBDSjoKeqY4AACAPwAAgD/m4ju9FLiXumqpCjm0iAE0J3HSuu5BILgAAIA/AACAPxoZtb1I84S6mAKkuhoqmbUq/J+5qTm/OQAAAAAAAIA/GpYvvXuGj7pDPHS5Hn9ltF4XhLp5to04AACAPwAAgD/NBgc8uJ7puXlDjjlNada0tk+mu33nprgAAIA/AACAP+Z3Eb0pKD26emMEufcsBrTCK946jpUcOAAAgD8AAIA/AFY6va6pkbpu5vA5PaIjtQMATzpxewu5AACAPwAAgD/aNJS94RyquqLfajfCZHkyl27COYhvhrYAAIA/AACAP2YWGb15skY/ou3tvNcqL74b/x+96ChBvQAAAAAAAAAAAEfCvXvCibpez0Y7wVq+NnD8Szs6XGe6AACAPwAAgD9mGpg8KfBNuqqyTLr1Yru1HNowOpb1bTkAAIA/AACAPxqITD0pbBe6ID+EO9dBD7ar8TG7c/CZugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGU9oKc/dIqMAWyUTegDjAF0lEdAoYGm3+dbxHV9lChoBkdAZNjri2lVLmgHTegDaAhHQKGCVbdJrcl1fZQoaAZHQGKEnvlU6xRoB03oA2gIR0Chit5a/yoXdX2UKGgGR0BlYurZJ04jaAdN6ANoCEdAoYroUtZmqnV9lChoBkdAVO5EVnEl3WgHTegDaAhHQKGN1yXlbNd1fZQoaAZHQGPVmr8zhxZoB03oA2gIR0Chj6668QI2dX2UKGgGR0BlkFFKCg9NaAdN6ANoCEdAoZD8nw5NoXV9lChoBkdAZn8eYlY2bWgHTegDaAhHQKGRiAPNFBp1fZQoaAZHQFpETYukDZFoB03oA2gIR0ChlBfoq0+ldX2UKGgGR0BxDziZOSGKaAdNpwNoCEdAoZVmgL7XQXV9lChoBkdAYRhRTjvNNmgHTegDaAhHQKGWE6kqMFV1fZQoaAZHQGQwpBomG/NoB03oA2gIR0ChmH0Uwi7kdX2UKGgGR0BkC9YKYzBRaAdN6ANoCEdAoZjl2q1gIHV9lChoBkdAX81U0elsQGgHTegDaAhHQKGZ1kXk5p91fZQoaAZHQGKUEwFkhA5oB03oA2gIR0ChoPophF3IdX2UKGgGR0Be1vQ8fV7QaAdN6ANoCEdAoaKfrpqynnV9lChoBkdAYY9X1anrIGgHTegDaAhHQKGwJzd1uBN1fZQoaAZHQF/MkU9IPLBoB03oA2gIR0ChsORSP2f1dX2UKGgGR0BrDdIy0rsjaAdNWQFoCEdAobbg+6iCa3V9lChoBkdAZK2blRxcV2gHTegDaAhHQKG33MsYl6Z1fZQoaAZHQF+sD15B1LdoB03oA2gIR0Cht+c5jpcHdX2UKGgGR0BjgvE87p3YaAdN6ANoCEdAobtmx6fJ3nV9lChoBkdAYEVu4PPLPmgHTegDaAhHQKG97SNOuaF1fZQoaAZHQF11Y2Kl54ZoB03oA2gIR0Chv3C9AX2vdX2UKGgGR0Bk7dAgPmPpaAdN6ANoCEdAocAMEJSiunV9lChoBkdAbsssAeaKDWgHTVkDaAhHQKHAFpztCzF1fZQoaAZHQD6yg6EJ0GNoB00BAWgIR0ChwiF4keIVdX2UKGgGR0Bd/rdi2DxtaAdN6ANoCEdAocKcvmHP/3V9lChoBkdAZiyG34Kx92gHTegDaAhHQKHD7Rb8m8d1fZQoaAZHQGQT1qFh5PdoB03oA2gIR0ChxuwosqaxdX2UKGgGR0BjYgnWrfcfaAdN6ANoCEdAocdPBeokzHV9lChoBkdAZGut5D7ZWmgHTegDaAhHQKHIOz544ZN1fZQoaAZHQGJh3/xUedVoB03oA2gIR0Ch0Au2iL2pdX2UKGgGR0Bi41utOmBOaAdN6ANoCEdAod83dCVrynV9lChoBkdAWoLc/MW43GgHTegDaAhHQKHgDzpX6qN1fZQoaAZHQGI1m7jDKo1oB03oA2gIR0Ch5s6hg3LndX2UKGgGR0BiYNXmvGIbaAdN6ANoCEdAoefN9nbqQnV9lChoBkdAYom/OdGy5mgHTegDaAhHQKHq4Pe54GF1fZQoaAZHQGeC070WdmRoB03oA2gIR0Ch7XpaaCtjdX2UKGgGR0BfL0kB0ZFYaAdN6ANoCEdAoe9+9cry2HV9lChoBkdAYua9ECvHLmgHTegDaAhHQKHwaetCAtp1fZQoaAZHQGV0q5sj3VVoB03oA2gIR0Ch8HoFFDv3dX2UKGgGR0BeVNQO4G2UaAdN6ANoCEdAofLuzIFNcnV9lChoBkdAYJFO7g88tGgHTegDaAhHQKHzZYBeXzF1fZQoaAZHQGba2TPjXFtoB03oA2gIR0Ch9Ie/Ho5hdX2UKGgGR0BkaAE2YOUdaAdN6ANoCEdAofdmALApKHV9lChoBkdAYAh74zrNW2gHTegDaAhHQKH3w+oLofV1fZQoaAZHQGCrDKHO8kFoB03oA2gIR0Ch+JCj1wo9dX2UKGgGR0BnXKk0rK/3aAdN6ANoCEdAof9ERYigTXV9lChoBkdAbLFxn3+MqGgHTd4CaAhHQKIAzC9h7Vt1fZQoaAZHQFvJYuCf6GhoB03oA2gIR0CiDW7o0Q9SdX2UKGgGR0Bh+tFlTWGzaAdN6ANoCEdAog4dL39JjHV9lChoBkdAcKeDifg75mgHTU0DaAhHQKIPOJ40Mw11fZQoaAZHQF7bMXrMTvloB03oA2gIR0CiF1wK8cuKdX2UKGgGR0Be3FbVz6rOaAdN6ANoCEdAohlEMkQf63V9lChoBkdAX/xz7uUliWgHTegDaAhHQKIaranrIHV1fZQoaAZHQGCUXh4t6HFoB03oA2gIR0CiG0VdxAB1dX2UKGgGR0Bn7sf3evZAaAdN6ANoCEdAohtP62v0RXV9lChoBkdAZate+mFajmgHTegDaAhHQKIdcotthux1fZQoaAZHQGRkzdtVJcxoB03oA2gIR0CiHesq8UVSdX2UKGgGR0BkYh/oaDPGaAdN6ANoCEdAoh9L9Q40dnV9lChoBkdAY9XN6gM+eWgHTegDaAhHQKIjPguRLbp1fZQoaAZHQF0f9Pk7wKBoB03oA2gIR0CiI8bhm5DrdX2UKGgGR0Bi8HRJEpiJaAdN6ANoCEdAoiT8pRXOnnV9lChoBkdAYaW580DU3GgHTegDaAhHQKIsJ4ptrKx1fZQoaAZHQFnsS26TW5JoB03oA2gIR0CiLb0lqrR0dX2UKGgGR0BgcMJjUd7waAdN6ANoCEdAojjP752yLXV9lChoBkdAZfxnnMdLhGgHTegDaAhHQKI5xKFqSHN1fZQoaAZHQGctsNlRP45oB03oA2gIR0CiO0xfv4M4dX2UKGgGR0BqY8AYHgP3aAdN9gJoCEdAoj1aCOFQEnV9lChoBkdAcfuGyon8bmgHTU4DaAhHQKJCTrKvFFV1fZQoaAZHQGDcjLB9Cu5oB03oA2gIR0CiQ9OgHu7ZdX2UKGgGR0BiDoaaTfSAaAdN6ANoCEdAokb7IHTqjnV9lChoBkdAYyttWMju8mgHTegDaAhHQKJHlW8RL9N1fZQoaAZHQGRkePBBRhtoB03oA2gIR0CiSaljNIK/dX2UKGgGR0BmKi1uzhP1aAdN6ANoCEdAokokP8Q7LnV9lChoBkdAZSSZsKsuF2gHTegDaAhHQKJLcbRWtEJ1fZQoaAZHQGSlfffoA4poB03oA2gIR0CiTolpXZGsdX2UKGgGR0Bvob8R+SbIaAdN7wJoCEdAok62Q6p5vHV9lChoBkdAY0GaRZEDyWgHTegDaAhHQKJO7vQWvbJ1fZQoaAZHQGF5ns9jgAJoB03oA2gIR0CiT8rWAf+1dX2UKGgGR0Bsnw150KZ2aAdNfgFoCEdAolAvcpLEk3V9lChoBkdAY55zGxUvPGgHTegDaAhHQKJZ2NuLrHF1fZQoaAZHQGAMQkX1rZdoB03oA2gIR0CiZaGorFwUdX2UKGgGR0Bm+kWXTmW/aAdN6ANoCEdAomZz7ZWaMXV9lChoBkdAXL7PRiPQwGgHTegDaAhHQKJn0FIuoP11fZQoaAZHQGRG4150KZ5oB03oA2gIR0CiaabuUliSdX2UKGgGR0BlGHN9ph4MaAdN6ANoCEdAonAw7eVLSXV9lChoBkdAY5kqhlDneWgHTegDaAhHQKJ2L/tpmEp1fZQoaAZHQGCQsBp5/spoB03oA2gIR0CidvkLH+6zdX2UKGgGR0BnZPokiUxEaAdN6ANoCEdAonlv7tReknV9lChoBkdAZoyHMUypJmgHTegDaAhHQKJ5/Kji4rl1fZQoaAZHQGUD//NqxkdoB03oA2gIR0Cie1b/XGwSdX2UKGgGR0BoEWwosqaxaAdN6ANoCEdAon5v2saKk3V9lChoBkdAYoLerMkhR2gHTegDaAhHQKJ+mMKkVN51fZQoaAZHQGHJXFDOTq1oB03oA2gIR0CiftO76Hj7dX2UKGgGR0Bla8xdpqREaAdN6ANoCEdAon+gRK6FunV9lChoBkdAYorG9YfW+WgHTegDaAhHQKKAC6DGtIV1fZQoaAZHQGVZW3z+WGBoB03oA2gIR0CiiO2nCO3ldX2UKGgGR0BitcwevIOpaAdN6ANoCEdAooz8rK/203VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a8cdbabe3d69cbe7f89c31d0ccec1660796410ba03b57f993d375adf7fd1689
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1e34af86fb4ccda2f6fb496cb92f4b823128be70b7ba79e8b8df0a71dbb2d4d
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (164 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.00960740000005, "std_reward": 19.427389787866044, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T16:05:08.688804"}