RANomAly / dataset.py
Amirparsa-Sal
Add codes
5d1f0ae
raw
history blame
2.43 kB
import torch.utils.data as data
import json
import random
from PIL import Image
import numpy as np
import torch
import os
class Dataset(data.Dataset):
def __init__(self, root, transform, target_transform, dataset_name, mode='test'):
self.root = root
self.transform = transform
self.target_transform = target_transform
self.data_all = []
meta_info = json.load(open(f'{self.root}/meta.json', 'r'))
name = self.root.split('/')[-1]
meta_info = meta_info[mode]
self.cls_names = list(meta_info.keys())
for cls_name in self.cls_names:
self.data_all.extend(meta_info[cls_name])
self.length = len(self.data_all)
self.obj_list = [folder for folder in os.listdir(root) if os.path.isdir(os.path.join(root, folder)) and not folder.startswith('.')]
self.class_name_map_class_id = {o: i for i, o in enumerate(self.obj_list)}
def __len__(self):
return self.length
def __getitem__(self, index):
data = self.data_all[index]
img_path, mask_path, cls_name, specie_name, anomaly = data['img_path'], data['mask_path'], data['cls_name'], \
data['specie_name'], data['anomaly']
img = Image.open(os.path.join(self.root, img_path))
if anomaly == 0:
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
else:
if os.path.isdir(os.path.join(self.root, mask_path)):
# just for classification not report error
img_mask = Image.fromarray(np.zeros((img.size[0], img.size[1])), mode='L')
else:
img_mask = np.array(Image.open(os.path.join(self.root, mask_path)).convert('L')) > 0
img_mask = Image.fromarray(img_mask.astype(np.uint8) * 255, mode='L')
# transforms
img = self.transform(img) if self.transform is not None else img
img_mask = self.target_transform(
img_mask) if self.target_transform is not None and img_mask is not None else img_mask
img_mask = [] if img_mask is None else img_mask
return {'img': img, 'img_mask': img_mask, 'cls_name': cls_name, 'anomaly': anomaly,
'img_path': os.path.join(self.root, img_path), "cls_id": self.class_name_map_class_id[cls_name]}