Amiri commited on
Commit
28aa0a7
1 Parent(s): 183c310
1_land_on_the_moon_PPO.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f1ba8b5c7edfd49ca132c8582ba34e66216710d430e1cc63656114164a9b953
3
+ size 147136
1_land_on_the_moon_PPO/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
1_land_on_the_moon_PPO/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f511db7a290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f511db7a320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f511db7a3b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f511db7a440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f511db7a4d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f511db7a560>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f511db7a5f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f511db7a680>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f511db7a710>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f511db7a7a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f511db7a830>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f511dbb5ea0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1658685968.1620543,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALuYjL6ueh4/M1lTvOmFUb5zyWe7jPuyvAAAAAAAAAAAANiyO3GwtD+ihA0/5QECPdkCz7tBOQC+AAAAAAAAAAAay9W9uKbeueNMZLwBbHg2T2BFuhYV5LUAAIA/AACAPxsXzL7CJI8+cX4hPXyRX74jGjc8IPHUvAAAAAAAAAAA+MXpvljUZD+n4xS+HGiDvg1RuL0gZW68AAAAAAAAAAANMr+9uA7vufMhZTrOEA82/rIzO77ShLkAAIA/AACAPxp9aL09wac/ZizsvvGNt76dcyM9Cv6/PAAAAAAAAAAA+nAtvpsclT3+pqg8S5vyvbLJH7zl2eq5AAAAAAAAAAAzg6m8XPtGutmwrbvbb904Kdk1uhOuNjoAAIA/AACAP5ozpj0pBAq6tq7Su6B1TjagfvK6diK6tQAAgD8AAIA/QB/VvQrnBbmnFMu6iRQRtV5Izro4j+45AACAPwAAgD8qq4S+n/HsPi6qKLwgjHO+PqgTvSSGCT0AAAAAAAAAADMA/jyPej668oL+usnfHzixE3e71uewOAAAgD8AAIA/E+IavqNHhD7Cyls9TmdNvi0XGr0/HYE9AAAAAAAAAAAzeuO9XFcPuugnILuQhLO2R+kmO22EIzYAAIA/AACAP23ya762+DE9pYByOJMPO7fupMy+A46HtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjV2iemtaW0CUhpRSlIwBbJRN6AOMAXSUR0B4olYeT3ZgdX2UKGgGaAloD0MIvHfUmBBbXECUhpRSlGgVTegDaBZHQHi3sdxQzk91fZQoaAZoCWgPQwiyZI7lXVJhwJSGlFKUaBVN7gFoFkdAeLtsQd0aInV9lChoBmgJaA9DCCxi2GFMj1dAlIaUUpRoFU3oA2gWR0B44qxbB42TdX2UKGgGaAloD0MIcuDVcmcRV0CUhpRSlGgVTegDaBZHQHj18rmQr+Z1fZQoaAZoCWgPQwhgPe5brRlfQJSGlFKUaBVN6ANoFkdAeQ28JD3M6nV9lChoBmgJaA9DCAbZsnxdjE1AlIaUUpRoFU3oA2gWR0B5Dp4lhPTHdX2UKGgGaAloD0MIOgg6WtX5XUCUhpRSlGgVTegDaBZHQHlpbsByS3d1fZQoaAZoCWgPQwhVTntKzv9UQJSGlFKUaBVN6ANoFkdAeXMlTm4iHXV9lChoBmgJaA9DCPXYlgFnu2BAlIaUUpRoFU3oA2gWR0B5kpVAAyVOdX2UKGgGaAloD0MIXcMMjafQZUCUhpRSlGgVTegDaBZHQHmfTDKoybh1fZQoaAZoCWgPQwjAIOnTqtBgQJSGlFKUaBVN6ANoFkdAebkW0JF9a3V9lChoBmgJaA9DCJVjsrj/RFdAlIaUUpRoFU3oA2gWR0B50rAvcrRTdX2UKGgGaAloD0MIukkMAiv/WUCUhpRSlGgVTegDaBZHQHngKCg9Net1fZQoaAZoCWgPQwh1x2Kb1JNhQJSGlFKUaBVN6ANoFkdAeeaXLeQ+2XV9lChoBmgJaA9DCFRU/UrncUlAlIaUUpRoFU3oA2gWR0B56yvovBacdX2UKGgGaAloD0MIUP2DSIapVECUhpRSlGgVTegDaBZHQHoERuTA31l1fZQoaAZoCWgPQwh7+Z0mM+pkQJSGlFKUaBVN6ANoFkdAeh9gnMMZxnV9lChoBmgJaA9DCInPnWD/qVpAlIaUUpRoFU3oA2gWR0B6I/uIAOridX2UKGgGaAloD0MI+dhdoKQLWkCUhpRSlGgVTegDaBZHQHpPsEeQuEp1fZQoaAZoCWgPQwh3o4/5gO9cQJSGlFKUaBVN6ANoFkdAemYJ+DvmYHV9lChoBmgJaA9DCESjO4idKe6/lIaUUpRoFU1XAWgWR0B6bByBClabdX2UKGgGaAloD0MIob5lTpfDWUCUhpRSlGgVTegDaBZHQHqAcB6rvLJ1fZQoaAZoCWgPQwiJ7e4ButlQQJSGlFKUaBVN6ANoFkdAeoFrTH80lHV9lChoBmgJaA9DCBb4im69rF5AlIaUUpRoFU3oA2gWR0B6kVqKxcFAdX2UKGgGaAloD0MIPZ6WH7j+WECUhpRSlGgVTegDaBZHQHrm74etCAt1fZQoaAZoCWgPQwivJk9ZTcdVQJSGlFKUaBVN6ANoFkdAewXA7PppvnV9lChoBmgJaA9DCGco7niTp1dAlIaUUpRoFU3oA2gWR0B7EbFefI0ZdX2UKGgGaAloD0MIe0ykNJtiWUCUhpRSlGgVTegDaBZHQHsoQpe/pMZ1fZQoaAZoCWgPQwjej9svn5g2QJSGlFKUaBVNBAFoFkdAeyqDF6zE8HV9lChoBmgJaA9DCA02dR4VsznAlIaUUpRoFU1CAWgWR0B7MGkN4JNTdX2UKGgGaAloD0MIwhTl0nijY0CUhpRSlGgVTegDaBZHQHs7rhR64Uh1fZQoaAZoCWgPQwjxun7BbmhcQJSGlFKUaBVN6ANoFkdAe0U+xW1c+3V9lChoBmgJaA9DCKcIcHoX8WRAlIaUUpRoFU3oA2gWR0B7ScQRPGhmdX2UKGgGaAloD0MINnLdlPLaY0CUhpRSlGgVTegDaBZHQHtMyuhbnox1fZQoaAZoCWgPQwgu51JcVfRfQJSGlFKUaBVN6ANoFkdAe3PXAM2FWXV9lChoBmgJaA9DCJZ6FoTyrjhAlIaUUpRoFU3oA2gWR0B7eBKWcBludX2UKGgGaAloD0MIFVW/0vkQKECUhpRSlGgVS+5oFkdAe4ay4Wk8BHV9lChoBmgJaA9DCLrXSX1ZGjhAlIaUUpRoFU1dAWgWR0B7m6VeKKpDdX2UKGgGaAloD0MItHHEWnz2YECUhpRSlGgVTegDaBZHQHuhdHMEA5t1fZQoaAZoCWgPQwgWMewwJutfQJSGlFKUaBVN6ANoFkdAe7RTTfBN23V9lChoBmgJaA9DCOJcwwyNszJAlIaUUpRoFUveaBZHQHu06qCHymR1fZQoaAZoCWgPQwgoKbAApt1SQJSGlFKUaBVN6ANoFkdAe7mGzKLbYnV9lChoBmgJaA9DCI7onnWNgVpAlIaUUpRoFU3oA2gWR0B7yi3rleWwdX2UKGgGaAloD0MIvt2SHLBEWkCUhpRSlGgVTegDaBZHQHvK602LpA51fZQoaAZoCWgPQwhAGHjuPVBgQJSGlFKUaBVN6ANoFkdAfE6DRtxdZHV9lChoBmgJaA9DCA/VlGQdF11AlIaUUpRoFU3oA2gWR0B8XFGx2SuAdX2UKGgGaAloD0MIdQMF3klNYkCUhpRSlGgVTegDaBZHQHx2DmnwXqJ1fZQoaAZoCWgPQwj75ZMVQxxgQJSGlFKUaBVN6ANoFkdAfHidY4hllXV9lChoBmgJaA9DCCxmhLcHQFdAlIaUUpRoFU3oA2gWR0B8fyax5cC6dX2UKGgGaAloD0MI8UqS5/r0XECUhpRSlGgVTegDaBZHQHyLRW1c+q11fZQoaAZoCWgPQwgYQPhQIq5lQJSGlFKUaBVN6ANoFkdAfJtogV45cXV9lChoBmgJaA9DCMQnnUiw22BAlIaUUpRoFU3oA2gWR0B80J6eGwiadX2UKGgGaAloD0MIAvBPqZJNYkCUhpRSlGgVTegDaBZHQHzmyVbA1vV1fZQoaAZoCWgPQwgps0EmmWdhQJSGlFKUaBVN6ANoFkdAfP7amoBJZnV9lChoBmgJaA9DCJmByvj3AV5AlIaUUpRoFU3oA2gWR0B9BYmtyPuHdX2UKGgGaAloD0MI4Sh5dY6xNUCUhpRSlGgVS+loFkdAfRr5qdpZfXV9lChoBmgJaA9DCLt+wW5Yn2JAlIaUUpRoFU3oA2gWR0B9G9Cu2Zy/dX2UKGgGaAloD0MIQkP/BJeDYUCUhpRSlGgVTegDaBZHQH0cZjc2zfJ1fZQoaAZoCWgPQwguVtRgGv5bQJSGlFKUaBVN6ANoFkdAfSFCD28IzHV9lChoBmgJaA9DCMcQABx7Dl9AlIaUUpRoFU3oA2gWR0B9MoPhAGB4dX2UKGgGaAloD0MItD7lmCxfXkCUhpRSlGgVTegDaBZHQH0zWB4D9wZ1fZQoaAZoCWgPQwhS1QRR91EtwJSGlFKUaBVL/mgWR0B9qBrpJPIodX2UKGgGaAloD0MI1LoNaj/iYUCUhpRSlGgVTegDaBZHQH22ttALRa51fZQoaAZoCWgPQwhLW1zjMxNeQJSGlFKUaBVN6ANoFkdAfcTy1eBxxXV9lChoBmgJaA9DCC3SxDvAkzJAlIaUUpRoFU0mAWgWR0B90ECKaXrudX2UKGgGaAloD0MIV87eGe15YkCUhpRSlGgVTegDaBZHQH3gFFH8TBZ1fZQoaAZoCWgPQwj2XnzRHj5ZQJSGlFKUaBVN6ANoFkdAfeLEdNnGsHV9lChoBmgJaA9DCDuKc9TR4VpAlIaUUpRoFU3oA2gWR0B96VU0elsQdX2UKGgGaAloD0MI0084u7X8XUCUhpRSlGgVTegDaBZHQH32JCa7Vax1fZQoaAZoCWgPQwhBEYsYdm9TQJSGlFKUaBVN6ANoFkdAfgW6Ww/xD3V9lChoBmgJaA9DCGUAqOLG3RDAlIaUUpRoFUvpaBZHQH4g7UsnRb91fZQoaAZoCWgPQwi+Ed2zrnhcQJSGlFKUaBVN6ANoFkdAflH5Pdl/Y3V9lChoBmgJaA9DCFHYRdGDoGNAlIaUUpRoFU3oA2gWR0B+as+s5n14dX2UKGgGaAloD0MIq3tkc1WHY0CUhpRSlGgVTegDaBZHQH5xiTlkpZx1fZQoaAZoCWgPQwjCTUaVYTlgQJSGlFKUaBVN6ANoFkdAfocNhmXgL3V9lChoBmgJaA9DCBIvT+eKKVxAlIaUUpRoFU3oA2gWR0B+h+UTtb9qdX2UKGgGaAloD0MIHzF6bqErYECUhpRSlGgVTegDaBZHQH6NhZpztC11fZQoaAZoCWgPQwivJ7ou/IlfQJSGlFKUaBVN6ANoFkdAfqCg/keZHHV9lChoBmgJaA9DCNLkYgysXWtAlIaUUpRoFU3QAWgWR0B+rpXhfjS5dX2UKGgGaAloD0MIx0j2CDUjHsCUhpRSlGgVTVEBaBZHQH8VCHmA9V51fZQoaAZoCWgPQwgglzjyQGteQJSGlFKUaBVN6ANoFkdAfxfkbxVhkXV9lChoBmgJaA9DCFuwVBfwsl5AlIaUUpRoFU3oA2gWR0B/JBx95QgtdX2UKGgGaAloD0MI5DJuaqBXXECUhpRSlGgVTegDaBZHQH8vaaoddVx1fZQoaAZoCWgPQwio4zEDlVRXQJSGlFKUaBVN6ANoFkdAfzfV3Ux20XV9lChoBmgJaA9DCKaXGMv0I1LAlIaUUpRoFU2YAWgWR0B/QjYkE9t/dX2UKGgGaAloD0MIi269pgd2X0CUhpRSlGgVTegDaBZHQH9Er7bcoH91fZQoaAZoCWgPQwgYeO49XORlQJSGlFKUaBVN6ANoFkdAf0yqTKT0QXV9lChoBmgJaA9DCOiC+pY5bVtAlIaUUpRoFU3oA2gWR0B/V93+uNgjdX2UKGgGaAloD0MIsWt7uyUHY0CUhpRSlGgVTegDaBZHQH9mATIvJzV1fZQoaAZoCWgPQwg1mIbhI+IBQJSGlFKUaBVLzmgWR0B/csGJN0vHdX2UKGgGaAloD0MIMZdUbTc4WUCUhpRSlGgVTegDaBZHQH+rU6PsAvN1fZQoaAZoCWgPQwjLTdTS3AFfQJSGlFKUaBVN6ANoFkdAf8nxptaY/nV9lChoBmgJaA9DCGUdjq7SWl5AlIaUUpRoFU3oA2gWR0B/37CoCMgmdX2UKGgGaAloD0MIqrUwC21wYECUhpRSlGgVTegDaBZHQH/ghJd0JWx1fZQoaAZoCWgPQwj2QZYFE0cmwJSGlFKUaBVL3GgWR0B/70sVclgMdX2UKGgGaAloD0MIppnudVKKXkCUhpRSlGgVTegDaBZHQH/5Unssxwh1fZQoaAZoCWgPQwjgufdwyfhYQJSGlFKUaBVN6ANoFkdAgAPm1YyO73V9lChoBmgJaA9DCHKjyFpDflxAlIaUUpRoFU3oA2gWR0CAETPj4pMIdX2UKGgGaAloD0MIyhmKO95jYECUhpRSlGgVTegDaBZHQIASpTGYKIB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
1_land_on_the_moon_PPO/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:615e7969fa2e48b5795841ae9d891ae83c47d97a86b7a5ed4a57f1ac5620831f
3
+ size 87865
1_land_on_the_moon_PPO/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8626db53dcf31f3278fad6194afbfe7b10c9881095b16ffb24cddec46f83cc3
3
+ size 43201
1_land_on_the_moon_PPO/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
1_land_on_the_moon_PPO/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 65.60 +/- 85.56
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f511db7a290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f511db7a320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f511db7a3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f511db7a440>", "_build": "<function ActorCriticPolicy._build at 0x7f511db7a4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f511db7a560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f511db7a5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f511db7a680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f511db7a710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f511db7a7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f511db7a830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f511dbb5ea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658685968.1620543, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALuYjL6ueh4/M1lTvOmFUb5zyWe7jPuyvAAAAAAAAAAAANiyO3GwtD+ihA0/5QECPdkCz7tBOQC+AAAAAAAAAAAay9W9uKbeueNMZLwBbHg2T2BFuhYV5LUAAIA/AACAPxsXzL7CJI8+cX4hPXyRX74jGjc8IPHUvAAAAAAAAAAA+MXpvljUZD+n4xS+HGiDvg1RuL0gZW68AAAAAAAAAAANMr+9uA7vufMhZTrOEA82/rIzO77ShLkAAIA/AACAPxp9aL09wac/ZizsvvGNt76dcyM9Cv6/PAAAAAAAAAAA+nAtvpsclT3+pqg8S5vyvbLJH7zl2eq5AAAAAAAAAAAzg6m8XPtGutmwrbvbb904Kdk1uhOuNjoAAIA/AACAP5ozpj0pBAq6tq7Su6B1TjagfvK6diK6tQAAgD8AAIA/QB/VvQrnBbmnFMu6iRQRtV5Izro4j+45AACAPwAAgD8qq4S+n/HsPi6qKLwgjHO+PqgTvSSGCT0AAAAAAAAAADMA/jyPej668oL+usnfHzixE3e71uewOAAAgD8AAIA/E+IavqNHhD7Cyls9TmdNvi0XGr0/HYE9AAAAAAAAAAAzeuO9XFcPuugnILuQhLO2R+kmO22EIzYAAIA/AACAP23ya762+DE9pYByOJMPO7fupMy+A46HtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjV2iemtaW0CUhpRSlIwBbJRN6AOMAXSUR0B4olYeT3ZgdX2UKGgGaAloD0MIvHfUmBBbXECUhpRSlGgVTegDaBZHQHi3sdxQzk91fZQoaAZoCWgPQwiyZI7lXVJhwJSGlFKUaBVN7gFoFkdAeLtsQd0aInV9lChoBmgJaA9DCCxi2GFMj1dAlIaUUpRoFU3oA2gWR0B44qxbB42TdX2UKGgGaAloD0MIcuDVcmcRV0CUhpRSlGgVTegDaBZHQHj18rmQr+Z1fZQoaAZoCWgPQwhgPe5brRlfQJSGlFKUaBVN6ANoFkdAeQ28JD3M6nV9lChoBmgJaA9DCAbZsnxdjE1AlIaUUpRoFU3oA2gWR0B5Dp4lhPTHdX2UKGgGaAloD0MIOgg6WtX5XUCUhpRSlGgVTegDaBZHQHlpbsByS3d1fZQoaAZoCWgPQwhVTntKzv9UQJSGlFKUaBVN6ANoFkdAeXMlTm4iHXV9lChoBmgJaA9DCPXYlgFnu2BAlIaUUpRoFU3oA2gWR0B5kpVAAyVOdX2UKGgGaAloD0MIXcMMjafQZUCUhpRSlGgVTegDaBZHQHmfTDKoybh1fZQoaAZoCWgPQwjAIOnTqtBgQJSGlFKUaBVN6ANoFkdAebkW0JF9a3V9lChoBmgJaA9DCJVjsrj/RFdAlIaUUpRoFU3oA2gWR0B50rAvcrRTdX2UKGgGaAloD0MIukkMAiv/WUCUhpRSlGgVTegDaBZHQHngKCg9Net1fZQoaAZoCWgPQwh1x2Kb1JNhQJSGlFKUaBVN6ANoFkdAeeaXLeQ+2XV9lChoBmgJaA9DCFRU/UrncUlAlIaUUpRoFU3oA2gWR0B56yvovBacdX2UKGgGaAloD0MIUP2DSIapVECUhpRSlGgVTegDaBZHQHoERuTA31l1fZQoaAZoCWgPQwh7+Z0mM+pkQJSGlFKUaBVN6ANoFkdAeh9gnMMZxnV9lChoBmgJaA9DCInPnWD/qVpAlIaUUpRoFU3oA2gWR0B6I/uIAOridX2UKGgGaAloD0MI+dhdoKQLWkCUhpRSlGgVTegDaBZHQHpPsEeQuEp1fZQoaAZoCWgPQwh3o4/5gO9cQJSGlFKUaBVN6ANoFkdAemYJ+DvmYHV9lChoBmgJaA9DCESjO4idKe6/lIaUUpRoFU1XAWgWR0B6bByBClabdX2UKGgGaAloD0MIob5lTpfDWUCUhpRSlGgVTegDaBZHQHqAcB6rvLJ1fZQoaAZoCWgPQwiJ7e4ButlQQJSGlFKUaBVN6ANoFkdAeoFrTH80lHV9lChoBmgJaA9DCBb4im69rF5AlIaUUpRoFU3oA2gWR0B6kVqKxcFAdX2UKGgGaAloD0MIPZ6WH7j+WECUhpRSlGgVTegDaBZHQHrm74etCAt1fZQoaAZoCWgPQwivJk9ZTcdVQJSGlFKUaBVN6ANoFkdAewXA7PppvnV9lChoBmgJaA9DCGco7niTp1dAlIaUUpRoFU3oA2gWR0B7EbFefI0ZdX2UKGgGaAloD0MIe0ykNJtiWUCUhpRSlGgVTegDaBZHQHsoQpe/pMZ1fZQoaAZoCWgPQwjej9svn5g2QJSGlFKUaBVNBAFoFkdAeyqDF6zE8HV9lChoBmgJaA9DCA02dR4VsznAlIaUUpRoFU1CAWgWR0B7MGkN4JNTdX2UKGgGaAloD0MIwhTl0nijY0CUhpRSlGgVTegDaBZHQHs7rhR64Uh1fZQoaAZoCWgPQwjxun7BbmhcQJSGlFKUaBVN6ANoFkdAe0U+xW1c+3V9lChoBmgJaA9DCKcIcHoX8WRAlIaUUpRoFU3oA2gWR0B7ScQRPGhmdX2UKGgGaAloD0MINnLdlPLaY0CUhpRSlGgVTegDaBZHQHtMyuhbnox1fZQoaAZoCWgPQwgu51JcVfRfQJSGlFKUaBVN6ANoFkdAe3PXAM2FWXV9lChoBmgJaA9DCJZ6FoTyrjhAlIaUUpRoFU3oA2gWR0B7eBKWcBludX2UKGgGaAloD0MIFVW/0vkQKECUhpRSlGgVS+5oFkdAe4ay4Wk8BHV9lChoBmgJaA9DCLrXSX1ZGjhAlIaUUpRoFU1dAWgWR0B7m6VeKKpDdX2UKGgGaAloD0MItHHEWnz2YECUhpRSlGgVTegDaBZHQHuhdHMEA5t1fZQoaAZoCWgPQwgWMewwJutfQJSGlFKUaBVN6ANoFkdAe7RTTfBN23V9lChoBmgJaA9DCOJcwwyNszJAlIaUUpRoFUveaBZHQHu06qCHymR1fZQoaAZoCWgPQwgoKbAApt1SQJSGlFKUaBVN6ANoFkdAe7mGzKLbYnV9lChoBmgJaA9DCI7onnWNgVpAlIaUUpRoFU3oA2gWR0B7yi3rleWwdX2UKGgGaAloD0MIvt2SHLBEWkCUhpRSlGgVTegDaBZHQHvK602LpA51fZQoaAZoCWgPQwhAGHjuPVBgQJSGlFKUaBVN6ANoFkdAfE6DRtxdZHV9lChoBmgJaA9DCA/VlGQdF11AlIaUUpRoFU3oA2gWR0B8XFGx2SuAdX2UKGgGaAloD0MIdQMF3klNYkCUhpRSlGgVTegDaBZHQHx2DmnwXqJ1fZQoaAZoCWgPQwj75ZMVQxxgQJSGlFKUaBVN6ANoFkdAfHidY4hllXV9lChoBmgJaA9DCCxmhLcHQFdAlIaUUpRoFU3oA2gWR0B8fyax5cC6dX2UKGgGaAloD0MI8UqS5/r0XECUhpRSlGgVTegDaBZHQHyLRW1c+q11fZQoaAZoCWgPQwgYQPhQIq5lQJSGlFKUaBVN6ANoFkdAfJtogV45cXV9lChoBmgJaA9DCMQnnUiw22BAlIaUUpRoFU3oA2gWR0B80J6eGwiadX2UKGgGaAloD0MIAvBPqZJNYkCUhpRSlGgVTegDaBZHQHzmyVbA1vV1fZQoaAZoCWgPQwgps0EmmWdhQJSGlFKUaBVN6ANoFkdAfP7amoBJZnV9lChoBmgJaA9DCJmByvj3AV5AlIaUUpRoFU3oA2gWR0B9BYmtyPuHdX2UKGgGaAloD0MI4Sh5dY6xNUCUhpRSlGgVS+loFkdAfRr5qdpZfXV9lChoBmgJaA9DCLt+wW5Yn2JAlIaUUpRoFU3oA2gWR0B9G9Cu2Zy/dX2UKGgGaAloD0MIQkP/BJeDYUCUhpRSlGgVTegDaBZHQH0cZjc2zfJ1fZQoaAZoCWgPQwguVtRgGv5bQJSGlFKUaBVN6ANoFkdAfSFCD28IzHV9lChoBmgJaA9DCMcQABx7Dl9AlIaUUpRoFU3oA2gWR0B9MoPhAGB4dX2UKGgGaAloD0MItD7lmCxfXkCUhpRSlGgVTegDaBZHQH0zWB4D9wZ1fZQoaAZoCWgPQwhS1QRR91EtwJSGlFKUaBVL/mgWR0B9qBrpJPIodX2UKGgGaAloD0MI1LoNaj/iYUCUhpRSlGgVTegDaBZHQH22ttALRa51fZQoaAZoCWgPQwhLW1zjMxNeQJSGlFKUaBVN6ANoFkdAfcTy1eBxxXV9lChoBmgJaA9DCC3SxDvAkzJAlIaUUpRoFU0mAWgWR0B90ECKaXrudX2UKGgGaAloD0MIV87eGe15YkCUhpRSlGgVTegDaBZHQH3gFFH8TBZ1fZQoaAZoCWgPQwj2XnzRHj5ZQJSGlFKUaBVN6ANoFkdAfeLEdNnGsHV9lChoBmgJaA9DCDuKc9TR4VpAlIaUUpRoFU3oA2gWR0B96VU0elsQdX2UKGgGaAloD0MI0084u7X8XUCUhpRSlGgVTegDaBZHQH32JCa7Vax1fZQoaAZoCWgPQwhBEYsYdm9TQJSGlFKUaBVN6ANoFkdAfgW6Ww/xD3V9lChoBmgJaA9DCGUAqOLG3RDAlIaUUpRoFUvpaBZHQH4g7UsnRb91fZQoaAZoCWgPQwi+Ed2zrnhcQJSGlFKUaBVN6ANoFkdAflH5Pdl/Y3V9lChoBmgJaA9DCFHYRdGDoGNAlIaUUpRoFU3oA2gWR0B+as+s5n14dX2UKGgGaAloD0MIq3tkc1WHY0CUhpRSlGgVTegDaBZHQH5xiTlkpZx1fZQoaAZoCWgPQwjCTUaVYTlgQJSGlFKUaBVN6ANoFkdAfocNhmXgL3V9lChoBmgJaA9DCBIvT+eKKVxAlIaUUpRoFU3oA2gWR0B+h+UTtb9qdX2UKGgGaAloD0MIHzF6bqErYECUhpRSlGgVTegDaBZHQH6NhZpztC11fZQoaAZoCWgPQwivJ7ou/IlfQJSGlFKUaBVN6ANoFkdAfqCg/keZHHV9lChoBmgJaA9DCNLkYgysXWtAlIaUUpRoFU3QAWgWR0B+rpXhfjS5dX2UKGgGaAloD0MIx0j2CDUjHsCUhpRSlGgVTVEBaBZHQH8VCHmA9V51fZQoaAZoCWgPQwgglzjyQGteQJSGlFKUaBVN6ANoFkdAfxfkbxVhkXV9lChoBmgJaA9DCFuwVBfwsl5AlIaUUpRoFU3oA2gWR0B/JBx95QgtdX2UKGgGaAloD0MI5DJuaqBXXECUhpRSlGgVTegDaBZHQH8vaaoddVx1fZQoaAZoCWgPQwio4zEDlVRXQJSGlFKUaBVN6ANoFkdAfzfV3Ux20XV9lChoBmgJaA9DCKaXGMv0I1LAlIaUUpRoFU2YAWgWR0B/QjYkE9t/dX2UKGgGaAloD0MIi269pgd2X0CUhpRSlGgVTegDaBZHQH9Er7bcoH91fZQoaAZoCWgPQwgYeO49XORlQJSGlFKUaBVN6ANoFkdAf0yqTKT0QXV9lChoBmgJaA9DCOiC+pY5bVtAlIaUUpRoFU3oA2gWR0B/V93+uNgjdX2UKGgGaAloD0MIsWt7uyUHY0CUhpRSlGgVTegDaBZHQH9mATIvJzV1fZQoaAZoCWgPQwg1mIbhI+IBQJSGlFKUaBVLzmgWR0B/csGJN0vHdX2UKGgGaAloD0MIMZdUbTc4WUCUhpRSlGgVTegDaBZHQH+rU6PsAvN1fZQoaAZoCWgPQwjLTdTS3AFfQJSGlFKUaBVN6ANoFkdAf8nxptaY/nV9lChoBmgJaA9DCGUdjq7SWl5AlIaUUpRoFU3oA2gWR0B/37CoCMgmdX2UKGgGaAloD0MIqrUwC21wYECUhpRSlGgVTegDaBZHQH/ghJd0JWx1fZQoaAZoCWgPQwj2QZYFE0cmwJSGlFKUaBVL3GgWR0B/70sVclgMdX2UKGgGaAloD0MIppnudVKKXkCUhpRSlGgVTegDaBZHQH/5Unssxwh1fZQoaAZoCWgPQwjgufdwyfhYQJSGlFKUaBVN6ANoFkdAgAPm1YyO73V9lChoBmgJaA9DCHKjyFpDflxAlIaUUpRoFU3oA2gWR0CAETPj4pMIdX2UKGgGaAloD0MIyhmKO95jYECUhpRSlGgVTegDaBZHQIASpTGYKIB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (250 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 65.6015366, "std_reward": 85.55683878142378, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-24T18:15:38.014586"}