Amirhnrn commited on
Commit
018aaa1
1 Parent(s): 2b9fbd6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.20 +/- 0.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da53011b9e2e94873211c07adfc91fd25de9ab0eaf691c7e48caf0f2d2b87933
3
+ size 106951
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78783a62e3b0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x78783a630c40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693334275098944710,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6gUav9p7BL/LKa8+kiKMPkyzCbuJauE+Wm3uvUToJz7fgUe+LauyP+xNnz/AURnAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADvG3v0YNDL+e4sw+Lq8Mv8VSor5g1uW++2XZvg9OYD5Hgr6/e8fFPwzK6j6MB7u/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqBRq/2nsEv8sprz7vh1K/wdPSv31gZj+SIow+TLMJu4lq4T7wAPk+CYKHu1rmyD5abe69ROgnPt+BR74G8dm/sejcPZaYq78tq7I/7E2fP8BRGcAPrmk8I4QIP9kT2b+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-6.0165274e-01 -5.1751482e-01 3.4211573e-01]\n [ 2.7370125e-01 -2.1011410e-03 4.4026592e-01]\n [-1.1641951e-01 1.6397196e-01 -1.9483136e-01]\n [ 1.3958489e+00 1.2445655e+00 -2.3956146e+00]]",
34
+ "desired_goal": "[[-1.4370439 -0.54707754 0.40016645]\n [-0.54954803 -0.31703773 -0.44890118]\n [-0.42460617 0.21904777 -1.4883507 ]\n [ 1.5451502 0.45857275 -1.4611678 ]]",
35
+ "observation": "[[-6.0165274e-01 -5.1751482e-01 3.4211573e-01 -8.2238668e-01\n -1.6470872e+00 8.9990979e-01]\n [ 2.7370125e-01 -2.1011410e-03 4.4026592e-01 4.8633528e-01\n -4.1353744e-03 3.9238244e-01]\n [-1.1641951e-01 1.6397196e-01 -1.9483136e-01 -1.7026680e+00\n 1.0786570e-01 -1.3405941e+00]\n [ 1.3958489e+00 1.2445655e+00 -2.3956146e+00 1.4262690e-02\n 5.3326625e-01 -1.6959182e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAovu+OzcGWTxCKWA+MjyhPQvK9z1SyiI+KDnVvTZ8qD3P2Fo+Sgr7vJSil73uAoI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.00582834 0.01324611 0.21890739]\n [ 0.07872809 0.12099084 0.15897492]\n [-0.10411292 0.08226816 0.21371768]\n [-0.03064455 -0.07404056 0.2539286 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9GLKmsNlRSMAWyUSwOMAXSUR0Ckz9dweeWfdX2UKGgGR7/XNFjNIK+jaAdLBWgIR0Ck0JcrRSgodX2UKGgGR7+3JcPe54GEaAdLAmgIR0Ck0F7nxJ/YdX2UKGgGR7/FNu+AVfu1aAdLA2gIR0Ck0B4yoGY8dX2UKGgGR7/StXxOLzf8aAdLA2gIR0Ckz+Qe3hGZdX2UKGgGR7++iGnGbTc7aAdLAmgIR0Ck0GmhufmLdX2UKGgGR7/R4zrNW2gGaAdLBGgIR0Ck0Kpz1bqydX2UKGgGR7/Iwco6S1VpaAdLA2gIR0Ck0C0jkdWAdX2UKGgGR7+5+fAbhm5EaAdLAmgIR0Ck0HKkuYhMdX2UKGgGR7+0wXZXdTHbaAdLAmgIR0Ck0LNelbeNdX2UKGgGR7/ZZ4wAU+LWaAdLBGgIR0Ckz/hvaURndX2UKGgGR7/B+WnjyWiUaAdLAmgIR0Ck0HvkzXSSdX2UKGgGR7/Mw7kn1FpgaAdLA2gIR0Ck0DtCzC1rdX2UKGgGR7/KnP3SKFZgaAdLA2gIR0Ck0MNWdVebdX2UKGgGR7/SuOjqOcUeaAdLA2gIR0Ck0AfmT1TSdX2UKGgGR7/UtRNyo4uLaAdLA2gIR0Ck0IsFEAo5dX2UKGgGR7/TLVWjoIOZaAdLA2gIR0Ck0Eoh6jWTdX2UKGgGR7/STYdyT6i1aAdLA2gIR0Ck0M94eLeidX2UKGgGR7/G5FPSDyvtaAdLA2gIR0Ck0BQLux8ldX2UKGgGR7+n446wMYuTaAdLAWgIR0Ck0NYREnb7dX2UKGgGR7/K2AoXsPataAdLA2gIR0Ck0JoiTt9hdX2UKGgGR7/XkkrwvxpdaAdLBGgIR0Ck0F0hNdqtdX2UKGgGR7/Ir1dxAB1caAdLA2gIR0Ck0CMKCxu9dX2UKGgGR7/H1vES/TLGaAdLA2gIR0Ck0OKgAZKndX2UKGgGR7+3JFLFn7HiaAdLAmgIR0Ck0GWxQizLdX2UKGgGR7/RbW3BpHqeaAdLBGgIR0Ck0Kr30wrUdX2UKGgGR7+/oGIKtxMnaAdLAmgIR0Ck0O67ulXSdX2UKGgGR7/C4Ia99MK1aAdLAmgIR0Ck0LZfD1oQdX2UKGgGR7/RziS7oSteaAdLA2gIR0Ck0HV6mfoSdX2UKGgGR7/ZAWBSUC7saAdLBGgIR0Ck0DeGwiaBdX2UKGgGR7+z5k9U0elsaAdLAmgIR0Ck0Pc+aBqcdX2UKGgGR7/Blnyup0fYaAdLAmgIR0Ck0L7kOqecdX2UKGgGR7/Ib5uZTho/aAdLA2gIR0Ck0IH4XXRPdX2UKGgGR7/JFXq7iADraAdLA2gIR0Ck0EQiRnvldX2UKGgGR7/Vh6By0a60aAdLBGgIR0Ck0Qm3vx6OdX2UKGgGR7+/hLoOhCdCaAdLAmgIR0Ck0IyFPBSDdX2UKGgGR7/cTmnwXqJNaAdLBGgIR0Ck0NHWrfcfdX2UKGgGR7/JodMj/uLKaAdLA2gIR0Ck0FLDQ7cPdX2UKGgGR7/JWrfcer+6aAdLA2gIR0Ck0RXJPqLTdX2UKGgGR7/MleF+NLlFaAdLA2gIR0Ck0N9V/+bWdX2UKGgGR7/bLvCuU2UCaAdLBGgIR0Ck0GSamXPadX2UKGgGR7/KmAskIHC5aAdLA2gIR0Ck0SRcNYr8dX2UKGgGR7+yYfGMn7YTaAdLAmgIR0Ck0OglOXVtdX2UKGgGR7/Y4keIVM24aAdLBmgIR0Ck0KeXAuZkdX2UKGgGR7/SBtUGVzIWaAdLA2gIR0Ck0TMjVx0ddX2UKGgGR7/TZDiOvMbFaAdLA2gIR0Ck0PcW0qpcdX2UKGgGR7/PIsAeaKDTaAdLA2gIR0Ck0LZvkzXSdX2UKGgGR7/YBwdbPhQ4aAdLBGgIR0Ck0HicPOIJdX2UKGgGR7/SbwjMV1wHaAdLA2gIR0Ck0UEkB0ZFdX2UKGgGR7/PQDV6NVBEaAdLA2gIR0Ck0QT2nKnvdX2UKGgGR7/R3Fkxyn1naAdLA2gIR0Ck0MQiaAnVdX2UKGgGR7/MxJNCZ4OdaAdLA2gIR0Ck0IaBiCrcdX2UKGgGR7+EQsf7rLQpaAdLAWgIR0Ck0Qnf/FR6dX2UKGgGR7+0PXkHUtqYaAdLAmgIR0Ck0JGS6lLwdX2UKGgGR7/ViKiwjdHlaAdLBGgIR0Ck0Velj3EidX2UKGgGR7/Z0zj3mFJyaAdLBGgIR0Ck0NvGp++edX2UKGgGR7/dm/336AOKaAdLBGgIR0Ck0SHrIHTrdX2UKGgGR7/KaBqbjLjhaAdLA2gIR0Ck0KMpobn6dX2UKGgGR7/JqzqrzXjEaAdLA2gIR0Ck0Wkfs/pudX2UKGgGR7/CwKSgXdj5aAdLAmgIR0Ck0SzrNW2gdX2UKGgGR7/QUornTy8SaAdLA2gIR0Ck0OwLeANHdX2UKGgGR7+zbDdgv115aAdLAmgIR0Ck0XIwudwvdX2UKGgGR7+yG47Rv3rVaAdLAmgIR0Ck0TXnQpnZdX2UKGgGR7/c9QXQ+lj3aAdLBGgIR0Ck0LbuMMqjdX2UKGgGR7+ynAIppeu3aAdLAmgIR0Ck0XpVbRnfdX2UKGgGR7/VVzZHuqm1aAdLBGgIR0Ck0P0O/cnFdX2UKGgGR7+7wAlv60pmaAdLAmgIR0Ck0L8iOeasdX2UKGgGR7/S45tFa0QcaAdLA2gIR0Ck0UTXSSeRdX2UKGgGR7/FZRKpT/ACaAdLAmgIR0Ck0QgvUSZjdX2UKGgGR7/An9ehPCVKaAdLAmgIR0Ck0MpaiblSdX2UKGgGR7/Q+vyLAHmjaAdLA2gIR0Ck0Ypaq0dBdX2UKGgGR7/KW7e2uxKQaAdLA2gIR0Ck0VK28Zk1dX2UKGgGR7+ioOx0MgEEaAdLAWgIR0Ck0VdmHxjKdX2UKGgGR7/Pa/yoXKr8aAdLA2gIR0Ck0RaxxDLKdX2UKGgGR7/YGe+VTrE+aAdLBGgIR0Ck0N/ixVyWdX2UKGgGR7/gKWC2+fyxaAdLBGgIR0Ck0Z+QEIPcdX2UKGgGR7/A79ycTakAaAdLAmgIR0Ck0SJMHryEdX2UKGgGR7/GlUp/gBLgaAdLA2gIR0Ck0WeOOsDGdX2UKGgGR7/AvVVghKUWaAdLAmgIR0Ck0OibtqpMdX2UKGgGR7/OhJyyUs4DaAdLA2gIR0Ck0bCEpRXPdX2UKGgGR7/PPC2tuDSPaAdLA2gIR0Ck0XtlZowmdX2UKGgGR7/Z01IiC8ODaAdLBGgIR0Ck0Tq3EyckdX2UKGgGR7/O8J2MbWEsaAdLA2gIR0Ck0P0gB91EdX2UKGgGR7++YG+sYEW7aAdLAmgIR0Ck0b0W2w3YdX2UKGgGR7/EY1He7+UAaAdLAmgIR0Ck0cYzzmOmdX2UKGgGR7/YEMb3oLXuaAdLBGgIR0Ck0Y6Pjn3ddX2UKGgGR7/Xw1zhgmZ3aAdLBGgIR0Ck0U3oC+10dX2UKGgGR7/YImgJ1JUYaAdLBGgIR0Ck0RBfjS5RdX2UKGgGR7/I8eS0Sh8IaAdLA2gIR0Ck0daFmFrVdX2UKGgGR7+3nTy8SPELaAdLAmgIR0Ck0RtIkJKKdX2UKGgGR7/TEV32VVxTaAdLA2gIR0Ck0Z7VBlcydX2UKGgGR7/TQSi/O+qSaAdLA2gIR0Ck0V4+KTB7dX2UKGgGR7/De+Eh7mdRaAdLAmgIR0Ck0SR/EwWWdX2UKGgGR7/eSE12q1gIaAdLBGgIR0Ck0er2xptadX2UKGgGR7/QzrNW2gFpaAdLA2gIR0Ck0W35N47jdX2UKGgGR7/SaZx7zCk5aAdLBGgIR0Ck0bNGNJe3dX2UKGgGR7/J7pFCswL3aAdLA2gIR0Ck0TSIxgy/dX2UKGgGR7/TE4ecQRPHaAdLA2gIR0Ck0firtE5RdX2UKGgGR7/G0rK/20zCaAdLA2gIR0Ck0XuejEehdX2UKGgGR7/RA6uGKyfMaAdLA2gIR0Ck0cEC3gDSdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c13bf0d281fcb8041543c86c662258472ccd68d5cb066e7b822a166606f655
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6994d7d73301e8c62734d09c6bfa66f3513846cc3f3f72cbde547309190887da
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78783a62e3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78783a630c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693334275098944710, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6gUav9p7BL/LKa8+kiKMPkyzCbuJauE+Wm3uvUToJz7fgUe+LauyP+xNnz/AURnAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADvG3v0YNDL+e4sw+Lq8Mv8VSor5g1uW++2XZvg9OYD5Hgr6/e8fFPwzK6j6MB7u/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqBRq/2nsEv8sprz7vh1K/wdPSv31gZj+SIow+TLMJu4lq4T7wAPk+CYKHu1rmyD5abe69ROgnPt+BR74G8dm/sejcPZaYq78tq7I/7E2fP8BRGcAPrmk8I4QIP9kT2b+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-6.0165274e-01 -5.1751482e-01 3.4211573e-01]\n [ 2.7370125e-01 -2.1011410e-03 4.4026592e-01]\n [-1.1641951e-01 1.6397196e-01 -1.9483136e-01]\n [ 1.3958489e+00 1.2445655e+00 -2.3956146e+00]]", "desired_goal": "[[-1.4370439 -0.54707754 0.40016645]\n [-0.54954803 -0.31703773 -0.44890118]\n [-0.42460617 0.21904777 -1.4883507 ]\n [ 1.5451502 0.45857275 -1.4611678 ]]", "observation": "[[-6.0165274e-01 -5.1751482e-01 3.4211573e-01 -8.2238668e-01\n -1.6470872e+00 8.9990979e-01]\n [ 2.7370125e-01 -2.1011410e-03 4.4026592e-01 4.8633528e-01\n -4.1353744e-03 3.9238244e-01]\n [-1.1641951e-01 1.6397196e-01 -1.9483136e-01 -1.7026680e+00\n 1.0786570e-01 -1.3405941e+00]\n [ 1.3958489e+00 1.2445655e+00 -2.3956146e+00 1.4262690e-02\n 5.3326625e-01 -1.6959182e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAovu+OzcGWTxCKWA+MjyhPQvK9z1SyiI+KDnVvTZ8qD3P2Fo+Sgr7vJSil73uAoI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00582834 0.01324611 0.21890739]\n [ 0.07872809 0.12099084 0.15897492]\n [-0.10411292 0.08226816 0.21371768]\n [-0.03064455 -0.07404056 0.2539286 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9GLKmsNlRSMAWyUSwOMAXSUR0Ckz9dweeWfdX2UKGgGR7/XNFjNIK+jaAdLBWgIR0Ck0JcrRSgodX2UKGgGR7+3JcPe54GEaAdLAmgIR0Ck0F7nxJ/YdX2UKGgGR7/FNu+AVfu1aAdLA2gIR0Ck0B4yoGY8dX2UKGgGR7/StXxOLzf8aAdLA2gIR0Ckz+Qe3hGZdX2UKGgGR7++iGnGbTc7aAdLAmgIR0Ck0GmhufmLdX2UKGgGR7/R4zrNW2gGaAdLBGgIR0Ck0Kpz1bqydX2UKGgGR7/Iwco6S1VpaAdLA2gIR0Ck0C0jkdWAdX2UKGgGR7+5+fAbhm5EaAdLAmgIR0Ck0HKkuYhMdX2UKGgGR7+0wXZXdTHbaAdLAmgIR0Ck0LNelbeNdX2UKGgGR7/ZZ4wAU+LWaAdLBGgIR0Ckz/hvaURndX2UKGgGR7/B+WnjyWiUaAdLAmgIR0Ck0HvkzXSSdX2UKGgGR7/Mw7kn1FpgaAdLA2gIR0Ck0DtCzC1rdX2UKGgGR7/KnP3SKFZgaAdLA2gIR0Ck0MNWdVebdX2UKGgGR7/SuOjqOcUeaAdLA2gIR0Ck0AfmT1TSdX2UKGgGR7/UtRNyo4uLaAdLA2gIR0Ck0IsFEAo5dX2UKGgGR7/TLVWjoIOZaAdLA2gIR0Ck0Eoh6jWTdX2UKGgGR7/STYdyT6i1aAdLA2gIR0Ck0M94eLeidX2UKGgGR7/G5FPSDyvtaAdLA2gIR0Ck0BQLux8ldX2UKGgGR7+n446wMYuTaAdLAWgIR0Ck0NYREnb7dX2UKGgGR7/K2AoXsPataAdLA2gIR0Ck0JoiTt9hdX2UKGgGR7/XkkrwvxpdaAdLBGgIR0Ck0F0hNdqtdX2UKGgGR7/Ir1dxAB1caAdLA2gIR0Ck0CMKCxu9dX2UKGgGR7/H1vES/TLGaAdLA2gIR0Ck0OKgAZKndX2UKGgGR7+3JFLFn7HiaAdLAmgIR0Ck0GWxQizLdX2UKGgGR7/RbW3BpHqeaAdLBGgIR0Ck0Kr30wrUdX2UKGgGR7+/oGIKtxMnaAdLAmgIR0Ck0O67ulXSdX2UKGgGR7/C4Ia99MK1aAdLAmgIR0Ck0LZfD1oQdX2UKGgGR7/RziS7oSteaAdLA2gIR0Ck0HV6mfoSdX2UKGgGR7/ZAWBSUC7saAdLBGgIR0Ck0DeGwiaBdX2UKGgGR7+z5k9U0elsaAdLAmgIR0Ck0Pc+aBqcdX2UKGgGR7/Blnyup0fYaAdLAmgIR0Ck0L7kOqecdX2UKGgGR7/Ib5uZTho/aAdLA2gIR0Ck0IH4XXRPdX2UKGgGR7/JFXq7iADraAdLA2gIR0Ck0EQiRnvldX2UKGgGR7/Vh6By0a60aAdLBGgIR0Ck0Qm3vx6OdX2UKGgGR7+/hLoOhCdCaAdLAmgIR0Ck0IyFPBSDdX2UKGgGR7/cTmnwXqJNaAdLBGgIR0Ck0NHWrfcfdX2UKGgGR7/JodMj/uLKaAdLA2gIR0Ck0FLDQ7cPdX2UKGgGR7/JWrfcer+6aAdLA2gIR0Ck0RXJPqLTdX2UKGgGR7/MleF+NLlFaAdLA2gIR0Ck0N9V/+bWdX2UKGgGR7/bLvCuU2UCaAdLBGgIR0Ck0GSamXPadX2UKGgGR7/KmAskIHC5aAdLA2gIR0Ck0SRcNYr8dX2UKGgGR7+yYfGMn7YTaAdLAmgIR0Ck0OglOXVtdX2UKGgGR7/Y4keIVM24aAdLBmgIR0Ck0KeXAuZkdX2UKGgGR7/SBtUGVzIWaAdLA2gIR0Ck0TMjVx0ddX2UKGgGR7/TZDiOvMbFaAdLA2gIR0Ck0PcW0qpcdX2UKGgGR7/PIsAeaKDTaAdLA2gIR0Ck0LZvkzXSdX2UKGgGR7/YBwdbPhQ4aAdLBGgIR0Ck0HicPOIJdX2UKGgGR7/SbwjMV1wHaAdLA2gIR0Ck0UEkB0ZFdX2UKGgGR7/PQDV6NVBEaAdLA2gIR0Ck0QT2nKnvdX2UKGgGR7/R3Fkxyn1naAdLA2gIR0Ck0MQiaAnVdX2UKGgGR7/MxJNCZ4OdaAdLA2gIR0Ck0IaBiCrcdX2UKGgGR7+EQsf7rLQpaAdLAWgIR0Ck0Qnf/FR6dX2UKGgGR7+0PXkHUtqYaAdLAmgIR0Ck0JGS6lLwdX2UKGgGR7/ViKiwjdHlaAdLBGgIR0Ck0Velj3EidX2UKGgGR7/Z0zj3mFJyaAdLBGgIR0Ck0NvGp++edX2UKGgGR7/dm/336AOKaAdLBGgIR0Ck0SHrIHTrdX2UKGgGR7/KaBqbjLjhaAdLA2gIR0Ck0KMpobn6dX2UKGgGR7/JqzqrzXjEaAdLA2gIR0Ck0Wkfs/pudX2UKGgGR7/CwKSgXdj5aAdLAmgIR0Ck0SzrNW2gdX2UKGgGR7/QUornTy8SaAdLA2gIR0Ck0OwLeANHdX2UKGgGR7+zbDdgv115aAdLAmgIR0Ck0XIwudwvdX2UKGgGR7+yG47Rv3rVaAdLAmgIR0Ck0TXnQpnZdX2UKGgGR7/c9QXQ+lj3aAdLBGgIR0Ck0LbuMMqjdX2UKGgGR7+ynAIppeu3aAdLAmgIR0Ck0XpVbRnfdX2UKGgGR7/VVzZHuqm1aAdLBGgIR0Ck0P0O/cnFdX2UKGgGR7+7wAlv60pmaAdLAmgIR0Ck0L8iOeasdX2UKGgGR7/S45tFa0QcaAdLA2gIR0Ck0UTXSSeRdX2UKGgGR7/FZRKpT/ACaAdLAmgIR0Ck0QgvUSZjdX2UKGgGR7/An9ehPCVKaAdLAmgIR0Ck0MpaiblSdX2UKGgGR7/Q+vyLAHmjaAdLA2gIR0Ck0Ypaq0dBdX2UKGgGR7/KW7e2uxKQaAdLA2gIR0Ck0VK28Zk1dX2UKGgGR7+ioOx0MgEEaAdLAWgIR0Ck0VdmHxjKdX2UKGgGR7/Pa/yoXKr8aAdLA2gIR0Ck0RaxxDLKdX2UKGgGR7/YGe+VTrE+aAdLBGgIR0Ck0N/ixVyWdX2UKGgGR7/gKWC2+fyxaAdLBGgIR0Ck0Z+QEIPcdX2UKGgGR7/A79ycTakAaAdLAmgIR0Ck0SJMHryEdX2UKGgGR7/GlUp/gBLgaAdLA2gIR0Ck0WeOOsDGdX2UKGgGR7/AvVVghKUWaAdLAmgIR0Ck0OibtqpMdX2UKGgGR7/OhJyyUs4DaAdLA2gIR0Ck0bCEpRXPdX2UKGgGR7/PPC2tuDSPaAdLA2gIR0Ck0XtlZowmdX2UKGgGR7/Z01IiC8ODaAdLBGgIR0Ck0Tq3EyckdX2UKGgGR7/O8J2MbWEsaAdLA2gIR0Ck0P0gB91EdX2UKGgGR7++YG+sYEW7aAdLAmgIR0Ck0b0W2w3YdX2UKGgGR7/EY1He7+UAaAdLAmgIR0Ck0cYzzmOmdX2UKGgGR7/YEMb3oLXuaAdLBGgIR0Ck0Y6Pjn3ddX2UKGgGR7/Xw1zhgmZ3aAdLBGgIR0Ck0U3oC+10dX2UKGgGR7/YImgJ1JUYaAdLBGgIR0Ck0RBfjS5RdX2UKGgGR7/I8eS0Sh8IaAdLA2gIR0Ck0daFmFrVdX2UKGgGR7+3nTy8SPELaAdLAmgIR0Ck0RtIkJKKdX2UKGgGR7/TEV32VVxTaAdLA2gIR0Ck0Z7VBlcydX2UKGgGR7/TQSi/O+qSaAdLA2gIR0Ck0V4+KTB7dX2UKGgGR7/De+Eh7mdRaAdLAmgIR0Ck0SR/EwWWdX2UKGgGR7/eSE12q1gIaAdLBGgIR0Ck0er2xptadX2UKGgGR7/QzrNW2gFpaAdLA2gIR0Ck0W35N47jdX2UKGgGR7/SaZx7zCk5aAdLBGgIR0Ck0bNGNJe3dX2UKGgGR7/J7pFCswL3aAdLA2gIR0Ck0TSIxgy/dX2UKGgGR7/TE4ecQRPHaAdLA2gIR0Ck0firtE5RdX2UKGgGR7/G0rK/20zCaAdLA2gIR0Ck0XuejEehdX2UKGgGR7/RA6uGKyfMaAdLA2gIR0Ck0cEC3gDSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (671 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.1987202124670148, "std_reward": 0.06756895182259448, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-29T19:28:44.680014"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f122f65404dc1f7129ff4d3587506396e578d623c987972b1d17b34feb29386
3
+ size 2636