Model save
Browse files
README.md
CHANGED
@@ -3,6 +3,8 @@ license: apache-2.0
|
|
3 |
base_model: facebook/wav2vec2-large-xlsr-53
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: wav2vec2-large-xlsr-georgian_v1
|
8 |
results: []
|
@@ -15,13 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
-
|
19 |
-
-
|
20 |
-
- eval_runtime: 1030.7944
|
21 |
-
- eval_samples_per_second: 11.262
|
22 |
-
- eval_steps_per_second: 0.704
|
23 |
-
- epoch: 15.31
|
24 |
-
- step: 9400
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -49,9 +46,137 @@ The following hyperparameters were used during training:
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 200
|
52 |
-
- num_epochs:
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
### Framework versions
|
56 |
|
57 |
- Transformers 4.35.2
|
|
|
3 |
base_model: facebook/wav2vec2-large-xlsr-53
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
model-index:
|
9 |
- name: wav2vec2-large-xlsr-georgian_v1
|
10 |
results: []
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1085
|
21 |
+
- Wer: 0.2807
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_steps: 200
|
49 |
+
- num_epochs: 20
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
56 |
+
| 3.1412 | 0.16 | 100 | 3.0855 | 1.0 |
|
57 |
+
| 3.0569 | 0.33 | 200 | 3.0369 | 1.0 |
|
58 |
+
| 2.9625 | 0.49 | 300 | 2.9778 | 1.0 |
|
59 |
+
| 0.7715 | 0.65 | 400 | 0.5113 | 0.7185 |
|
60 |
+
| 0.4725 | 0.81 | 500 | 0.3072 | 0.5138 |
|
61 |
+
| 0.4103 | 0.98 | 600 | 0.2447 | 0.4337 |
|
62 |
+
| 0.2775 | 1.14 | 700 | 0.2055 | 0.3769 |
|
63 |
+
| 0.2554 | 1.3 | 800 | 0.1950 | 0.3603 |
|
64 |
+
| 0.263 | 1.46 | 900 | 0.1813 | 0.3372 |
|
65 |
+
| 0.2294 | 1.63 | 1000 | 0.1664 | 0.3132 |
|
66 |
+
| 0.2296 | 1.79 | 1100 | 0.1565 | 0.2962 |
|
67 |
+
| 0.2183 | 1.95 | 1200 | 0.1474 | 0.2986 |
|
68 |
+
| 0.1822 | 2.12 | 1300 | 0.1546 | 0.2811 |
|
69 |
+
| 0.1798 | 2.28 | 1400 | 0.1442 | 0.2811 |
|
70 |
+
| 0.179 | 2.44 | 1500 | 0.1411 | 0.2686 |
|
71 |
+
| 0.1593 | 2.6 | 1600 | 0.1408 | 0.2739 |
|
72 |
+
| 0.2652 | 2.77 | 1700 | 0.2074 | 0.4499 |
|
73 |
+
| 0.1834 | 2.93 | 1800 | 0.1570 | 0.3942 |
|
74 |
+
| 0.2015 | 3.09 | 1900 | 0.1516 | 0.3859 |
|
75 |
+
| 0.1696 | 3.26 | 2000 | 0.1452 | 0.3826 |
|
76 |
+
| 0.1782 | 3.42 | 2100 | 0.1413 | 0.3763 |
|
77 |
+
| 0.1636 | 3.58 | 2200 | 0.1350 | 0.3761 |
|
78 |
+
| 0.173 | 3.74 | 2300 | 0.1323 | 0.3622 |
|
79 |
+
| 0.1704 | 3.91 | 2400 | 0.1289 | 0.3644 |
|
80 |
+
| 0.1418 | 4.07 | 2500 | 0.1266 | 0.3481 |
|
81 |
+
| 0.1403 | 4.23 | 2600 | 0.1274 | 0.3482 |
|
82 |
+
| 0.1353 | 4.4 | 2700 | 0.1287 | 0.3489 |
|
83 |
+
| 0.1432 | 4.56 | 2800 | 0.1293 | 0.3532 |
|
84 |
+
| 0.1283 | 4.72 | 2900 | 0.1226 | 0.3416 |
|
85 |
+
| 0.1367 | 4.88 | 3000 | 0.1206 | 0.3426 |
|
86 |
+
| 0.1162 | 5.05 | 3100 | 0.1222 | 0.3394 |
|
87 |
+
| 0.1267 | 5.21 | 3200 | 0.1183 | 0.3313 |
|
88 |
+
| 0.1126 | 5.37 | 3300 | 0.1180 | 0.3299 |
|
89 |
+
| 0.1127 | 5.53 | 3400 | 0.1177 | 0.3305 |
|
90 |
+
| 0.1155 | 5.7 | 3500 | 0.1185 | 0.3317 |
|
91 |
+
| 0.1086 | 5.86 | 3600 | 0.1129 | 0.3227 |
|
92 |
+
| 0.1135 | 6.02 | 3700 | 0.1118 | 0.3266 |
|
93 |
+
| 0.1112 | 6.19 | 3800 | 0.1142 | 0.3228 |
|
94 |
+
| 0.0866 | 6.35 | 3900 | 0.1172 | 0.3284 |
|
95 |
+
| 0.1003 | 6.51 | 4000 | 0.1133 | 0.3244 |
|
96 |
+
| 0.4366 | 6.68 | 4100 | 0.2436 | 0.4587 |
|
97 |
+
| 0.1216 | 6.84 | 4200 | 0.1344 | 0.3386 |
|
98 |
+
| 0.1165 | 7.0 | 4300 | 0.1280 | 0.3324 |
|
99 |
+
| 0.131 | 7.17 | 4400 | 0.1252 | 0.3245 |
|
100 |
+
| 0.1407 | 7.33 | 4500 | 0.1234 | 0.3252 |
|
101 |
+
| 0.1394 | 7.49 | 4600 | 0.1208 | 0.3177 |
|
102 |
+
| 0.1449 | 7.65 | 4700 | 0.1180 | 0.3165 |
|
103 |
+
| 0.1295 | 7.82 | 4800 | 0.1170 | 0.3152 |
|
104 |
+
| 0.1228 | 7.98 | 4900 | 0.1182 | 0.3160 |
|
105 |
+
| 0.0913 | 8.14 | 5000 | 0.1122 | 0.3086 |
|
106 |
+
| 0.1014 | 8.3 | 5100 | 0.1118 | 0.3100 |
|
107 |
+
| 0.0861 | 8.47 | 5200 | 0.1126 | 0.3074 |
|
108 |
+
| 0.1442 | 8.63 | 5300 | 0.1373 | 0.3311 |
|
109 |
+
| 0.1054 | 8.79 | 5400 | 0.1225 | 0.3143 |
|
110 |
+
| 0.104 | 8.96 | 5500 | 0.1190 | 0.3157 |
|
111 |
+
| 0.0972 | 9.12 | 5600 | 0.1140 | 0.3076 |
|
112 |
+
| 0.0948 | 9.28 | 5700 | 0.1090 | 0.3067 |
|
113 |
+
| 0.1067 | 9.45 | 5800 | 0.1117 | 0.3074 |
|
114 |
+
| 0.0798 | 9.61 | 5900 | 0.1097 | 0.3040 |
|
115 |
+
| 0.089 | 9.77 | 6000 | 0.1049 | 0.3005 |
|
116 |
+
| 0.0829 | 9.93 | 6100 | 0.1056 | 0.3006 |
|
117 |
+
| 0.0687 | 10.1 | 6200 | 0.1102 | 0.3018 |
|
118 |
+
| 0.0844 | 10.26 | 6300 | 0.1056 | 0.2985 |
|
119 |
+
| 0.0862 | 10.42 | 6400 | 0.1073 | 0.2990 |
|
120 |
+
| 0.0936 | 10.58 | 6500 | 0.1049 | 0.2949 |
|
121 |
+
| 0.0821 | 10.75 | 6600 | 0.1053 | 0.2966 |
|
122 |
+
| 0.0797 | 10.91 | 6700 | 0.1043 | 0.2939 |
|
123 |
+
| 0.0802 | 11.07 | 6800 | 0.1057 | 0.2911 |
|
124 |
+
| 0.0895 | 11.24 | 6900 | 0.1029 | 0.2934 |
|
125 |
+
| 0.073 | 11.4 | 7000 | 0.1042 | 0.2897 |
|
126 |
+
| 0.0842 | 11.56 | 7100 | 0.1023 | 0.2902 |
|
127 |
+
| 0.0825 | 11.72 | 7200 | 0.1024 | 0.2911 |
|
128 |
+
| 0.0958 | 11.89 | 7300 | 0.1018 | 0.2888 |
|
129 |
+
| 0.0698 | 12.05 | 7400 | 0.1030 | 0.2883 |
|
130 |
+
| 0.0693 | 12.21 | 7500 | 0.1019 | 0.2872 |
|
131 |
+
| 0.0736 | 12.37 | 7600 | 0.1003 | 0.2871 |
|
132 |
+
| 0.0683 | 12.54 | 7700 | 0.1004 | 0.2865 |
|
133 |
+
| 0.0649 | 12.7 | 7800 | 0.1005 | 0.2835 |
|
134 |
+
| 0.0669 | 12.86 | 7900 | 0.0985 | 0.2846 |
|
135 |
+
| 0.069 | 13.03 | 8000 | 0.0999 | 0.2844 |
|
136 |
+
| 0.0674 | 13.19 | 8100 | 0.1002 | 0.2835 |
|
137 |
+
| 0.0695 | 13.35 | 8200 | 0.1013 | 0.2829 |
|
138 |
+
| 0.0578 | 13.51 | 8300 | 0.1019 | 0.2821 |
|
139 |
+
| 0.0614 | 13.68 | 8400 | 0.0978 | 0.2815 |
|
140 |
+
| 0.0554 | 13.84 | 8500 | 0.0984 | 0.2813 |
|
141 |
+
| 0.0763 | 14.0 | 8600 | 0.1001 | 0.2813 |
|
142 |
+
| 0.0877 | 14.16 | 8700 | 0.1000 | 0.2808 |
|
143 |
+
| 0.0882 | 14.33 | 8800 | 0.0979 | 0.2803 |
|
144 |
+
| 0.0864 | 14.49 | 8900 | 0.0981 | 0.2788 |
|
145 |
+
| 0.0828 | 14.65 | 9000 | 0.0975 | 0.2790 |
|
146 |
+
| 0.3052 | 14.82 | 9100 | 0.2150 | 0.4175 |
|
147 |
+
| 0.1478 | 14.98 | 9200 | 0.1325 | 0.3027 |
|
148 |
+
| 1.0386 | 15.15 | 9300 | 0.4375 | 0.6793 |
|
149 |
+
| 0.116 | 15.31 | 9400 | 0.1266 | 0.3042 |
|
150 |
+
| 0.1226 | 15.47 | 9500 | 0.1206 | 0.3000 |
|
151 |
+
| 0.0885 | 15.63 | 9600 | 0.1173 | 0.2958 |
|
152 |
+
| 0.091 | 15.8 | 9700 | 0.1145 | 0.2929 |
|
153 |
+
| 0.0886 | 15.96 | 9800 | 0.1112 | 0.2908 |
|
154 |
+
| 0.0783 | 16.12 | 9900 | 0.1075 | 0.2873 |
|
155 |
+
| 0.069 | 16.28 | 10000 | 0.1072 | 0.2876 |
|
156 |
+
| 0.0783 | 16.45 | 10100 | 0.1070 | 0.2876 |
|
157 |
+
| 0.0669 | 16.61 | 10200 | 0.1055 | 0.2848 |
|
158 |
+
| 0.072 | 16.77 | 10300 | 0.1043 | 0.2846 |
|
159 |
+
| 0.0721 | 16.94 | 10400 | 0.1020 | 0.2821 |
|
160 |
+
| 0.0694 | 17.1 | 10500 | 0.1047 | 0.2803 |
|
161 |
+
| 0.0574 | 17.26 | 10600 | 0.1053 | 0.2830 |
|
162 |
+
| 0.0578 | 17.42 | 10700 | 0.1042 | 0.2806 |
|
163 |
+
| 0.0663 | 17.59 | 10800 | 0.1035 | 0.2801 |
|
164 |
+
| 0.0615 | 17.75 | 10900 | 0.1025 | 0.2785 |
|
165 |
+
| 0.0706 | 17.91 | 11000 | 0.1028 | 0.2792 |
|
166 |
+
| 0.2373 | 18.08 | 11100 | 0.1686 | 0.3372 |
|
167 |
+
| 0.1137 | 18.24 | 11200 | 0.1202 | 0.2938 |
|
168 |
+
| 0.1008 | 18.4 | 11300 | 0.1143 | 0.2895 |
|
169 |
+
| 0.1004 | 18.57 | 11400 | 0.1127 | 0.2874 |
|
170 |
+
| 0.0874 | 18.73 | 11500 | 0.1108 | 0.2861 |
|
171 |
+
| 0.0926 | 18.89 | 11600 | 0.1108 | 0.2838 |
|
172 |
+
| 0.0703 | 19.05 | 11700 | 0.1101 | 0.2834 |
|
173 |
+
| 0.0893 | 19.22 | 11800 | 0.1097 | 0.2824 |
|
174 |
+
| 0.0681 | 19.38 | 11900 | 0.1099 | 0.2822 |
|
175 |
+
| 0.0668 | 19.54 | 12000 | 0.1086 | 0.2813 |
|
176 |
+
| 0.069 | 19.7 | 12100 | 0.1087 | 0.2810 |
|
177 |
+
| 0.0683 | 19.87 | 12200 | 0.1085 | 0.2807 |
|
178 |
+
|
179 |
+
|
180 |
### Framework versions
|
181 |
|
182 |
- Transformers 4.35.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1261975580
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73798ba7f7122167f6fe474451eb5d43eb64d645b519274739b962cb33dfce3c
|
3 |
size 1261975580
|
runs/Nov25_06-42-29_1afcb4349619/events.out.tfevents.1700896129.1afcb4349619.4109.0
CHANGED
Binary files a/runs/Nov25_06-42-29_1afcb4349619/events.out.tfevents.1700896129.1afcb4349619.4109.0 and b/runs/Nov25_06-42-29_1afcb4349619/events.out.tfevents.1700896129.1afcb4349619.4109.0 differ
|
|