Amir13 commited on
Commit
1593627
1 Parent(s): 951170e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlm-roberta-base-ncbi_disease
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-base-ncbi_disease
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0915
23
+ - Precision: 0.8273
24
+ - Recall: 0.8763
25
+ - F1: 0.8511
26
+ - Accuracy: 0.9866
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 169 | 0.0682 | 0.7049 | 0.7763 | 0.7389 | 0.9784 |
58
+ | No log | 2.0 | 338 | 0.0575 | 0.7558 | 0.8592 | 0.8042 | 0.9832 |
59
+ | 0.0889 | 3.0 | 507 | 0.0558 | 0.8092 | 0.8592 | 0.8334 | 0.9859 |
60
+ | 0.0889 | 4.0 | 676 | 0.0595 | 0.8316 | 0.8579 | 0.8446 | 0.9858 |
61
+ | 0.0889 | 5.0 | 845 | 0.0665 | 0.7998 | 0.8566 | 0.8272 | 0.9850 |
62
+ | 0.0191 | 6.0 | 1014 | 0.0796 | 0.8229 | 0.85 | 0.8362 | 0.9862 |
63
+ | 0.0191 | 7.0 | 1183 | 0.0783 | 0.8193 | 0.8474 | 0.8331 | 0.9860 |
64
+ | 0.0191 | 8.0 | 1352 | 0.0792 | 0.8257 | 0.8539 | 0.8396 | 0.9864 |
65
+ | 0.0079 | 9.0 | 1521 | 0.0847 | 0.8154 | 0.8658 | 0.8398 | 0.9851 |
66
+ | 0.0079 | 10.0 | 1690 | 0.0855 | 0.8160 | 0.875 | 0.8444 | 0.9857 |
67
+ | 0.0079 | 11.0 | 1859 | 0.0868 | 0.8081 | 0.8645 | 0.8353 | 0.9864 |
68
+ | 0.0037 | 12.0 | 2028 | 0.0912 | 0.8036 | 0.8776 | 0.8390 | 0.9853 |
69
+ | 0.0037 | 13.0 | 2197 | 0.0907 | 0.8323 | 0.8684 | 0.8500 | 0.9868 |
70
+ | 0.0037 | 14.0 | 2366 | 0.0899 | 0.8192 | 0.8763 | 0.8468 | 0.9865 |
71
+ | 0.0023 | 15.0 | 2535 | 0.0915 | 0.8273 | 0.8763 | 0.8511 | 0.9866 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.26.1
77
+ - Pytorch 1.13.1+cu116
78
+ - Datasets 2.9.0
79
+ - Tokenizers 0.13.2