|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import StableDiffusionKDiffusionPipeline |
|
from diffusers.utils import slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_diffusion_1(self): |
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
sd_pipe.set_scheduler("sample_euler") |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np") |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_2(self): |
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
sd_pipe.set_scheduler("sample_euler") |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
output = sd_pipe([prompt], generator=generator, guidance_scale=9.0, num_inference_steps=20, output_type="np") |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1 |
|
|
|
def test_stable_diffusion_karras_sigmas(self): |
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
sd_pipe.set_scheduler("sample_dpmpp_2m") |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
generator = torch.manual_seed(0) |
|
output = sd_pipe( |
|
[prompt], |
|
generator=generator, |
|
guidance_scale=7.5, |
|
num_inference_steps=15, |
|
output_type="np", |
|
use_karras_sigmas=True, |
|
) |
|
|
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array( |
|
[0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] |
|
) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_stable_diffusion_noise_sampler_seed(self): |
|
sd_pipe = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
sd_pipe.set_scheduler("sample_dpmpp_sde") |
|
|
|
prompt = "A painting of a squirrel eating a burger" |
|
seed = 0 |
|
images1 = sd_pipe( |
|
[prompt], |
|
generator=torch.manual_seed(seed), |
|
noise_sampler_seed=seed, |
|
guidance_scale=9.0, |
|
num_inference_steps=20, |
|
output_type="np", |
|
).images |
|
images2 = sd_pipe( |
|
[prompt], |
|
generator=torch.manual_seed(seed), |
|
noise_sampler_seed=seed, |
|
guidance_scale=9.0, |
|
num_inference_steps=20, |
|
output_type="np", |
|
).images |
|
|
|
assert images1.shape == (1, 512, 512, 3) |
|
assert images2.shape == (1, 512, 512, 3) |
|
assert np.abs(images1.flatten() - images2.flatten()).max() < 1e-2 |
|
|