|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy |
|
from diffusers.utils.testing_utils import ( |
|
is_onnx_available, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
require_onnxruntime, |
|
require_torch_gpu, |
|
) |
|
|
|
|
|
if is_onnx_available(): |
|
import onnxruntime as ort |
|
|
|
|
|
@nightly |
|
@require_onnxruntime |
|
@require_torch_gpu |
|
class StableDiffusionOnnxInpaintLegacyPipelineIntegrationTests(unittest.TestCase): |
|
@property |
|
def gpu_provider(self): |
|
return ( |
|
"CUDAExecutionProvider", |
|
{ |
|
"gpu_mem_limit": "15000000000", |
|
"arena_extend_strategy": "kSameAsRequested", |
|
}, |
|
) |
|
|
|
@property |
|
def gpu_options(self): |
|
options = ort.SessionOptions() |
|
options.enable_mem_pattern = False |
|
return options |
|
|
|
def test_inference(self): |
|
init_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo.png" |
|
) |
|
mask_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" |
|
) |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" |
|
) |
|
|
|
|
|
pipe = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
revision="onnx", |
|
safety_checker=None, |
|
feature_extractor=None, |
|
provider=self.gpu_provider, |
|
sess_options=self.gpu_options, |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A red cat sitting on a park bench" |
|
|
|
generator = np.random.RandomState(0) |
|
output = pipe( |
|
prompt=prompt, |
|
image=init_image, |
|
mask_image=mask_image, |
|
strength=0.75, |
|
guidance_scale=7.5, |
|
num_inference_steps=15, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
assert np.abs(expected_image - image).max() < 1e-2 |
|
|