esm2_t33_650M_qlora_binding_12M / qlora_eff_load_train_only.py
AmelieSchreiber's picture
Upload qlora_eff_load_train_only.py
bf2d7db
raw history blame
No virus
9.34 kB
import os
import wandb
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset as TorchDataset
from datetime import datetime
import random
from sklearn.utils.class_weight import compute_class_weight
from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
TrainingArguments,
Trainer,
BitsAndBytesConfig
)
from accelerate import Accelerator
from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType, prepare_model_for_kbit_training
import pickle
import gc
from tqdm import tqdm
# Define Desired Max Length
MAX_LENGTH = 512
# Initialize accelerator and Weights & Biases
accelerator = Accelerator()
os.environ["WANDB_NOTEBOOK_NAME"] = 'training.py'
wandb.init(project='binding_site_prediction')
# Helper Functions and Data Preparation
#-----------------------------------------------------------------------------
class ProteinDataset(TorchDataset):
def __init__(self, sequences_path, labels_path, tokenizer, max_length):
self.tokenizer = tokenizer
self.max_length = max_length
with open(sequences_path, "rb") as f:
self.sequences = pickle.load(f)
with open(labels_path, "rb") as f:
self.labels = pickle.load(f)
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
sequence = self.sequences[idx]
label = self.labels[idx]
tokenized = self.tokenizer(sequence, padding='max_length', truncation=True, max_length=self.max_length, return_tensors="pt", is_split_into_words=False, add_special_tokens=False)
# Remove the extra batch dimension
for key in tokenized:
tokenized[key] = tokenized[key].squeeze(0)
# Ensure labels are also padded/truncated to match tokenized input
label_padded = [-100] * self.max_length # Using -100 as the ignore index
label_padded[:len(label)] = label[:self.max_length]
tokenized["labels"] = torch.tensor(label_padded)
return tokenized
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def save_config_to_txt(config, filename):
"""Save the configuration dictionary to a text file."""
with open(filename, 'w') as f:
for key, value in config.items():
f.write(f"{key}: {value}\n")
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
mask = labels != -100
predictions = predictions[mask].flatten()
labels = labels[mask].flatten()
accuracy = accuracy_score(labels, predictions)
precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')
auc = roc_auc_score(labels, predictions)
mcc = matthews_corrcoef(labels, predictions)
# Explicitly delete numpy arrays and call the garbage collector
del predictions
del labels
gc.collect()
return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc, 'mcc': mcc}
def compute_loss(model, logits, inputs):
labels = inputs["labels"]
loss_fct = nn.CrossEntropyLoss(weight=class_weights)
active_loss = inputs["attention_mask"].view(-1) == 1
active_logits = logits.view(-1, model.config.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
return loss
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
train_dataset = ProteinDataset("data/12M_data/512_train_sequences_chunked_by_family.pkl", "data/12M_data/512_train_labels_chunked_by_family.pkl", tokenizer, MAX_LENGTH)
# Compute Class Weights
# Sample a subset of labels for computing class weights (e.g., 100,000 sequences)
SAMPLE_SIZE = 100000
with open("data/12M_data/512_train_labels_chunked_by_family.pkl", "rb") as f:
all_train_labels = pickle.load(f)
sample_labels = random.sample(all_train_labels, SAMPLE_SIZE)
# Flatten the sampled labels
flat_sample_labels = [label for sublist in sample_labels for label in sublist]
# Compute class weights using the sampled labels
classes = [0, 1]
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_sample_labels)
class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)
# Define Custom Trainer Class
class WeightedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(**inputs)
logits = outputs.logits
loss = compute_loss(model, logits, inputs)
return (loss, outputs) if return_outputs else loss
# Configure the quantization settings
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
def train_function_no_sweeps(train_dataset):
# Directly set the config
config = {
"lora_alpha": 1,
"lora_dropout": 0.5,
"lr": 1.701568055793089e-04,
"lr_scheduler_type": "cosine",
"max_grad_norm": 0.5,
"num_train_epochs": 1,
"per_device_train_batch_size": 200,
# "per_device_test_batch_size": 40,
"r": 2,
"weight_decay": 0.3,
# Add other hyperparameters as needed
}
# Log the config to W&B
wandb.config.update(config)
# Save the config to a text file
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
config_filename = f"esm2_t33_650M_qlora_config_{timestamp}.txt"
save_config_to_txt(config, config_filename)
model_checkpoint = "facebook/esm2_t33_650M_UR50D"
# Define labels and model
id2label = {0: "No binding site", 1: "Binding site"}
label2id = {v: k for k, v in id2label.items()}
model = AutoModelForTokenClassification.from_pretrained(
model_checkpoint,
num_labels=len(id2label),
id2label=id2label,
label2id=label2id,
quantization_config=bnb_config
)
# Prepare the model for 4-bit quantization training
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
# Convert the model into a PeftModel
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS,
inference_mode=False,
r=config["r"],
lora_alpha=config["lora_alpha"],
target_modules=[
"query",
"key",
"value",
"EsmSelfOutput.dense",
"EsmIntermediate.dense",
"EsmOutput.dense",
# "EsmContactPredictionHead.regression",
"classifier"
],
lora_dropout=config["lora_dropout"],
bias="none", # or "all" or "lora_only"
# modules_to_save=["classifier"]
)
model = get_peft_model(model, peft_config)
print_trainable_parameters(model) # added this in
# Use the accelerator
model = accelerator.prepare(model)
train_dataset = accelerator.prepare(train_dataset)
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
# Training setup
training_args = TrainingArguments(
output_dir=f"esm2_t33_650M_qlora_binding_sites_{timestamp}",
learning_rate=config["lr"],
lr_scheduler_type=config["lr_scheduler_type"],
gradient_accumulation_steps=1,
max_grad_norm=config["max_grad_norm"],
per_device_train_batch_size=config["per_device_train_batch_size"],
# per_device_eval_batch_size=config["per_device_test_batch_size"],
num_train_epochs=config["num_train_epochs"],
weight_decay=config["weight_decay"],
evaluation_strategy="no",
save_strategy="steps", # Save at the end of each epoch
save_steps=10000, # Also save every 10000 steps
load_best_model_at_end=False,
metric_for_best_model="f1",
greater_is_better=True,
push_to_hub=False,
logging_dir=None,
logging_first_step=False,
logging_steps=100,
save_total_limit=7,
no_cuda=False,
seed=8893,
fp16=True,
report_to='wandb',
optim="paged_adamw_8bit" # added this in
)
# Initialize Trainer
trainer = WeightedTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
data_collator=DataCollatorForTokenClassification(tokenizer=tokenizer)
)
# Train and Save Model
trainer.train()
save_path = os.path.join("qlora_binding_sites", f"best_model_esm2_t33_650M_qlora_{timestamp}")
trainer.save_model(save_path)
tokenizer.save_pretrained(save_path)
# Call the training function
if __name__ == "__main__":
train_function_no_sweeps(train_dataset)