AmelieSchreiber commited on
Commit
a2760f2
·
1 Parent(s): 4e63f79

Upload 7 files

Browse files
README.md CHANGED
@@ -1,80 +1,9 @@
1
  ---
2
  library_name: peft
3
- license: mit
4
- language:
5
- - en
6
- tags:
7
- - transformers
8
- - biology
9
- - esm
10
- - esm2
11
- - protein
12
- - protein language model
13
  ---
14
- # ESM-2 RNA Binding Site LoRA
15
-
16
- This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation ([LoRA](https://huggingface.co/docs/peft/task_guides/token-classification-lora)) of
17
- the [esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) model for the (binary) token classification task of
18
- predicting RNA binding sites of proteins. The Github with the training script and conda env YAML can be
19
- [found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). You can also find a version of this model
20
- that was fine-tuned without LoRA [here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor).
21
-
22
  ## Training procedure
23
 
24
- This is a Low Rank Adaptation (LoRA) of `esm2_t6_8M_UR50D`,
25
- trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites)
26
- using a `75/25` train/test split. It achieves an evaluation loss of `0.17312709987163544`.
27
-
28
  ### Framework versions
29
 
30
- - PEFT 0.4.0
31
-
32
- ## Using the Model
33
-
34
- To use, try running:
35
- ```python
36
- from transformers import AutoModelForTokenClassification, AutoTokenizer
37
- from peft import PeftModel
38
- import torch
39
-
40
- # Path to the saved LoRA model
41
- model_path = "AmelieSchreiber/esm2_t30_150M_UR50D_LoRA_RNA_binding"
42
- # ESM2 base model
43
- base_model_path = "facebook/esm2_t30_150M_UR50D"
44
-
45
- # Load the model
46
- base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
47
- loaded_model = PeftModel.from_pretrained(base_model, model_path)
48
-
49
- # Ensure the model is in evaluation mode
50
- loaded_model.eval()
51
 
52
- # Load the tokenizer
53
- loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
54
-
55
- # Protein sequence for inference
56
- protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
57
-
58
- # Tokenize the sequence
59
- inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
60
-
61
- # Run the model
62
- with torch.no_grad():
63
- logits = loaded_model(**inputs).logits
64
-
65
- # Get predictions
66
- tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
67
- predictions = torch.argmax(logits, dim=2)
68
-
69
- # Define labels
70
- id2label = {
71
- 0: "No binding site",
72
- 1: "Binding site"
73
- }
74
-
75
- # Print the predicted labels for each token
76
- for token, prediction in zip(tokens, predictions[0].numpy()):
77
- if token not in ['<pad>', '<cls>', '<eos>']:
78
- print((token, id2label[prediction]))
79
-
80
- ```
 
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
4
  ## Training procedure
5
 
 
 
 
 
6
  ### Framework versions
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ - PEFT 0.4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "facebook/esm2_t30_150M_UR50D",
4
+ "bias": "all",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 16,
11
+ "lora_dropout": 0.1,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 32,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "query",
18
+ "key",
19
+ "value"
20
+ ],
21
+ "task_type": "TOKEN_CLS"
22
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54594596755c5a6be53f40096bdaa80d79320473cc84ec25b0cc41db622aa2cd
3
+ size 15750833
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "<cls>",
3
+ "eos_token": "<eos>",
4
+ "mask_token": "<mask>",
5
+ "pad_token": "<pad>",
6
+ "unk_token": "<unk>"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "model_max_length": 1000000000000000019884624838656,
4
+ "tokenizer_class": "EsmTokenizer"
5
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fffc4fc4da24eef90002cdc8ff78928507824695c61fdce3f26df01aff254ec
3
+ size 4091
vocab.txt ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <cls>
2
+ <pad>
3
+ <eos>
4
+ <unk>
5
+ L
6
+ A
7
+ G
8
+ V
9
+ S
10
+ E
11
+ R
12
+ T
13
+ I
14
+ D
15
+ P
16
+ K
17
+ Q
18
+ N
19
+ F
20
+ Y
21
+ M
22
+ H
23
+ W
24
+ C
25
+ X
26
+ B
27
+ U
28
+ Z
29
+ O
30
+ .
31
+ -
32
+ <null_1>
33
+ <mask>